Suppr超能文献

基于人群的疾病模拟模型的验证:概念和方法综述。

Validation of population-based disease simulation models: a review of concepts and methods.

机构信息

School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.

出版信息

BMC Public Health. 2010 Nov 18;10:710. doi: 10.1186/1471-2458-10-710.

Abstract

BACKGROUND

Computer simulation models are used increasingly to support public health research and policy, but questions about their quality persist. The purpose of this article is to review the principles and methods for validation of population-based disease simulation models.

METHODS

We developed a comprehensive framework for validating population-based chronic disease simulation models and used this framework in a review of published model validation guidelines. Based on the review, we formulated a set of recommendations for gathering evidence of model credibility.

RESULTS

Evidence of model credibility derives from examining: 1) the process of model development, 2) the performance of a model, and 3) the quality of decisions based on the model. Many important issues in model validation are insufficiently addressed by current guidelines. These issues include a detailed evaluation of different data sources, graphical representation of models, computer programming, model calibration, between-model comparisons, sensitivity analysis, and predictive validity. The role of external data in model validation depends on the purpose of the model (e.g., decision analysis versus prediction). More research is needed on the methods of comparing the quality of decisions based on different models.

CONCLUSION

As the role of simulation modeling in population health is increasing and models are becoming more complex, there is a need for further improvements in model validation methodology and common standards for evaluating model credibility.

摘要

背景

计算机模拟模型越来越多地被用于支持公共卫生研究和政策,但关于其质量的问题仍然存在。本文的目的是回顾基于人群的疾病模拟模型验证的原则和方法。

方法

我们开发了一个综合框架来验证基于人群的慢性疾病模拟模型,并在对已发表的模型验证指南的综述中使用了该框架。基于综述,我们制定了一系列用于收集模型可信度证据的建议。

结果

模型可信度的证据来源于检查:1)模型开发过程,2)模型性能,和 3)基于模型的决策质量。当前指南中许多重要的模型验证问题没有得到充分解决。这些问题包括对不同数据源的详细评估、模型的图形表示、计算机编程、模型校准、模型间比较、敏感性分析和预测有效性。外部数据在模型验证中的作用取决于模型的目的(例如,决策分析与预测)。需要进一步研究基于不同模型的决策质量比较方法。

结论

随着模拟建模在人群健康中的作用不断增加且模型变得越来越复杂,需要进一步改进模型验证方法和评估模型可信度的通用标准。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
5

引用本文的文献

本文引用的文献

1
Uncertainty and patient heterogeneity in medical decision models.医学决策模型中的不确定性和患者异质性。
Med Decis Making. 2010 Mar-Apr;30(2):194-205. doi: 10.1177/0272989X09342277. Epub 2010 Feb 26.
2
Development of a population-based microsimulation model of osteoarthritis in Canada.开发加拿大基于人群的骨关节炎微观模拟模型。
Osteoarthritis Cartilage. 2010 Mar;18(3):303-11. doi: 10.1016/j.joca.2009.10.010. Epub 2009 Oct 23.
3
Principles of good modeling practice in healthcare cost-effectiveness studies.医疗成本效益研究中的良好建模实践原则。
Expert Rev Pharmacoecon Outcomes Res. 2004 Apr;4(2):189-98. doi: 10.1586/14737167.4.2.189.
7
The performance of risk prediction models.风险预测模型的性能。
Biom J. 2008 Aug;50(4):457-79. doi: 10.1002/bimj.200810443.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验