IEEE Trans Biomed Eng. 2011 Aug;58(8). doi: 10.1109/TBME.2010.2093523. Epub 2010 Nov 18.
A novel vessel context-based voting is proposed for automatic liver vasculature segmentation in CT images. It is able to conduct full vessel segmentation and recognition of multiple vasculatures effectively. The vessel context describes context information of a voxel related to vessel properties, such as intensity, saliency, direction and connectivity. Voxels are grouped to liver vasculatures hierarchically based on vessel context. They are first grouped locally into vessel branches with the advantage of a vessel junction measurement, and then grouped globally into vasculatures, which is implemented using a multiple feature point voting mechanism. The proposed method has been evaluated on 10 clinical CT datasets. Segmentation of third-order vessel trees from CT images (0.76 × 0.76 × 2.0mm) of the portal venous phase takes less than 3 min on a PC with 2.0 GHz dual core processor and the average segmentation accuracy is up to 98%.
提出了一种基于新血管上下文的投票方法,用于 CT 图像中肝脏血管的自动分割。它能够有效地进行全血管分割和多种血管的识别。血管上下文描述了与血管特性(如强度、显著性、方向和连通性)相关的体素的上下文信息。根据血管上下文,体素被分层地分组到肝血管中。它们首先基于血管分支的测量值在局部进行分组,然后使用多点投票机制全局分组到血管中。该方法已经在 10 个临床 CT 数据集上进行了评估。在具有 2.0GHz 双核处理器的 PC 上,对门静脉期的 0.76×0.76×2.0mm 的 CT 图像进行三分支血管树的分割耗时不到 3 分钟,平均分割精度高达 98%。