Suppr超能文献

模糊预分类器在B型颈动脉纵向超声图像高性能LI/MA分割中的作用。

Role of fuzzy pre-classifier for high performance LI/MA segmentation in B-mode longitudinal carotid ultrasound images.

作者信息

Molinari Filippo, Gaetano Laura, Balestra Gabriella, Suri Jasjit S

机构信息

BioLab, Department of Electronics, Politecnico di Torino, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4719-22. doi: 10.1109/IEMBS.2010.5626390.

Abstract

The automated segmentation of the carotid artery wall from ultrasound images is required for an accurate measurement of the artery intima-media thickness. Segmentation accuracy of automated techniques is usually limited by noise and artifacts. In 2005, the authors developed a methodology called CULEX whose performance was noise sensitive. The final stage of CULEX segmentation was fuzzy clustering of the pixels, to detect the lumen-intima (LI) and media-adventitia (MA) carotid wall interfaces. In this paper, we show the effect of a fuzzy Mamdani-type pre-classifier used to improve the segmentation performance. Thanks to the Mamdami fuzzy pre-classifier, we optimized the de-fuzzyfication threshold, increasing the LI and MA performance by 62% and 3.5%, respectively. The obtained segmentation errors (55.6 ± 69.4 microm for LI and 34.4 ± 24.4 microm for MA), validated against human tracings and on a 200-images dataset containing a mixture of healthy and plaque vessels.

摘要

为了准确测量动脉内膜中层厚度,需要从超声图像中自动分割颈动脉壁。自动技术的分割精度通常受噪声和伪影的限制。2005年,作者开发了一种名为CULEX的方法,其性能对噪声敏感。CULEX分割的最后阶段是对像素进行模糊聚类,以检测管腔内膜(LI)和中膜外膜(MA)颈动脉壁界面。在本文中,我们展示了用于提高分割性能的模糊Mamdani型预分类器的效果。由于Mamdami模糊预分类器,我们优化了去模糊化阈值,使LI和MA的性能分别提高了62%和3.5%。所获得的分割误差(LI为55.6±69.4微米,MA为34.4±24.4微米),是在一个包含健康血管和有斑块血管的200幅图像数据集上,对照人工追踪进行验证的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验