von Bunau Paul, Meinecke Frank C, Scholler Simon, Muller Klaus-Robert
TU Berlin (Berlin Institute of Technology), Dept. Computer Science, Franklinstr. 28/29, 10587, Germany.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2810-3. doi: 10.1109/IEMBS.2010.5626537.
Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics.
例如,从脑电图(EEG)或功能磁共振成像(fMRI)获得的神经生理学测量本质上是非平稳的,因为潜在大脑过程的特性会随时间变化。例如,在脑机接口(BCI)中,性能(比特率)下降是一种常见现象,因为在校准阶段确定的参数在应用阶段可能不是最优的,此时大脑状态不同,例如由于疲劳加剧或实验范式的变化。我们表明,平稳子空间分析(SSA),一种时间序列分析方法,可用于从高维脑电图测量中识别潜在的平稳和非平稳脑源。将BCI限制在由SSA找到的平稳源上可以显著提高性能。此外,SSA产生对应于平稳和非平稳脑源的地形图,揭示了它们的空间特征。