Suppr超能文献

通过锁相低频脑电信号进行手部动作解码

Hand movement decoding by phase-locking low frequency EEG signals.

作者信息

Liu Jiaen, Perdoni Christopher, He Bin

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6335-8. doi: 10.1109/IEMBS.2011.6091564.

Abstract

Being noninvasive, low-risk and inexpensive, EEG is a promising methodology in the application of human Brain Computer Interface (BCI) to help those with motor dysfunctions. Here we employed a center-out task paradigm to study the decoding of hand velocity in the EEG recording. We tested the hypothesis using a linear regression model and found a significant correlation between velocity and the low-pass filtered EEG signal (<2 Hz). The low-pass filtered EEG was not only tuned to the direction but also phase-locked to the amplitude of velocity. This suggests an EEG form of the neuronal population vector theory, which is considered to encode limb kinematic information, and provides a new method of BCI implementation.

摘要

脑电图(EEG)具有非侵入性、低风险和低成本的特点,在将人类脑机接口(BCI)应用于帮助运动功能障碍患者方面是一种很有前景的方法。在此,我们采用中心外任务范式来研究脑电图记录中手部速度的解码。我们使用线性回归模型检验了这一假设,发现速度与低通滤波后的脑电图信号(<2 Hz)之间存在显著相关性。低通滤波后的脑电图不仅与方向调谐,而且与速度幅度锁相。这表明了一种神经元群体向量理论的脑电图形式,该理论被认为可编码肢体运动学信息,并提供了一种新的脑机接口实现方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验