Liu Jiaen, Perdoni Christopher, He Bin
Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6335-8. doi: 10.1109/IEMBS.2011.6091564.
Being noninvasive, low-risk and inexpensive, EEG is a promising methodology in the application of human Brain Computer Interface (BCI) to help those with motor dysfunctions. Here we employed a center-out task paradigm to study the decoding of hand velocity in the EEG recording. We tested the hypothesis using a linear regression model and found a significant correlation between velocity and the low-pass filtered EEG signal (<2 Hz). The low-pass filtered EEG was not only tuned to the direction but also phase-locked to the amplitude of velocity. This suggests an EEG form of the neuronal population vector theory, which is considered to encode limb kinematic information, and provides a new method of BCI implementation.
脑电图(EEG)具有非侵入性、低风险和低成本的特点,在将人类脑机接口(BCI)应用于帮助运动功能障碍患者方面是一种很有前景的方法。在此,我们采用中心外任务范式来研究脑电图记录中手部速度的解码。我们使用线性回归模型检验了这一假设,发现速度与低通滤波后的脑电图信号(<2 Hz)之间存在显著相关性。低通滤波后的脑电图不仅与方向调谐,而且与速度幅度锁相。这表明了一种神经元群体向量理论的脑电图形式,该理论被认为可编码肢体运动学信息,并提供了一种新的脑机接口实现方法。