Suppr超能文献

通过使用脑连接特征改进对错误相关电位的识别。

Improved recognition of error related potentials through the use of brain connectivity features.

作者信息

Zhang Huaijian, Chavarriaga Ricardo, Goel Mohit Kumar, Gheorghe Lucian, Millán José del R

机构信息

Defitech Foundation Chair in Non-Invasive Brain-Machine Interface, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Switzerland.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6740-3. doi: 10.1109/EMBC.2012.6347541.

Abstract

Brain error processing plays a key role in goal-directed behavior and learning in human brain. Directed transfer function (DTF) on EEG signal brings unique features for discrimination between correct and error cases in brain-computer interface (BCI) system. We describe the first application of brain connectivity features for recognizing error-related signals in non-invasive BCI. EEG signal were recorded from 16 human subjects when they monitored stimuli moving in either correct or erroneous direction. Classification performance using waveform features, brain connectivity features and their combination were compared. The result of combined features yielded highest classification accuracy, 0:85. In addition, we also show that brain connectivity at theta band around 200 ms after stimuli carry highly discriminant information between error and correct trials. This paper provides evidence that the use of connectivity features improve the performance of an EEG based BCI.

摘要

大脑错误处理在人类大脑的目标导向行为和学习中起着关键作用。脑电图(EEG)信号上的定向传递函数(DTF)为脑机接口(BCI)系统中正确和错误情况的区分带来了独特特征。我们描述了大脑连接特征在非侵入性BCI中识别错误相关信号的首次应用。当16名人类受试者监测沿正确或错误方向移动的刺激时,记录了他们的EEG信号。比较了使用波形特征、大脑连接特征及其组合的分类性能。组合特征的结果产生了最高的分类准确率,即0.85。此外,我们还表明,刺激后约200毫秒时θ波段的大脑连接在错误和正确试验之间携带了高度可区分的信息。本文提供了证据表明,连接特征的使用提高了基于EEG的BCI的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验