Suppr超能文献

基于头皮脑电图过零间隔分析预测颞叶癫痫发作

Predicting temporal lobe epileptic seizures based on zero-crossing interval analysis in scalp EEG.

作者信息

Shahidi Zandi Ali, Tafreshi Reza, Javidan Manouchehr, Dumont Guy A

机构信息

Department of Electrical & Computer Engineering at The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5537-40. doi: 10.1109/IEMBS.2010.5626764.

Abstract

A novel real-time patient-specific algorithm to predict epileptic seizures is proposed. The method is based on the analysis of the positive zero-crossing intervals in the scalp electroencephalogram (EEG), describing the brain dynamics. In a moving-window analysis, the histogram of these intervals in each EEG epoch is computed, and the distribution of the histogram value in specific bins, selected using interictal and preictal references, is estimated based on the values obtained from the current epoch and the epochs of the last 5 min. The resulting distribution for each selected bin is then compared to two reference distributions (interictal and preictal), and a seizure prediction index is developed. Comparing this index with a patient-specific threshold for all EEG channels, a seizure prediction alarm is finally generated. The algorithm was tested on approximately 15.5 hours of multichannel scalp EEG recordings from three patients with temporal lobe epilepsy, including 14 seizures. 86% of seizures were predicted with an average prediction time of 20.8 min and a false prediction rate of 0.12/hr.

摘要

提出了一种新颖的针对特定患者的实时癫痫发作预测算法。该方法基于对头皮脑电图(EEG)中正向过零间隔的分析,以此描述脑动力学。在移动窗口分析中,计算每个EEG时段内这些间隔的直方图,并根据当前时段及过去5分钟时段所获得的值,估计使用发作间期和发作前期参考值选择的特定区间内直方图值的分布。然后将每个选定区间的结果分布与两个参考分布(发作间期和发作前期)进行比较,并建立癫痫发作预测指标。将该指标与所有EEG通道的特定患者阈值进行比较,最终生成癫痫发作预测警报。该算法在三名颞叶癫痫患者约15.5小时的多通道头皮EEG记录上进行了测试,其中包括14次癫痫发作。86%的癫痫发作得到了预测,平均预测时间为20.8分钟,误报率为每小时0.12次。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验