Suppr超能文献

增强的相干性预示着颞叶癫痫患者单药治疗的医学耐药性。

Increased coherence predicts medical refractoriness in patients with temporal lobe epilepsy on monotherapy.

机构信息

Department of Neurology, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea.

Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Sep 4;14(1):20530. doi: 10.1038/s41598-024-71583-0.

Abstract

Among patients with epilepsy, 30-40% experience recurrent seizures even after adequate antiseizure medications therapies, making them refractory. The early identification of refractory epilepsy is important to provide timely surgical treatment for these patients. In this study, we analyze interictal electroencephalography (EEG) data to predict drug refractoriness in patients with temporal lobe epilepsy (TLE) who were treated with monotherapy at the time of the first EEG acquisition. Various EEG features were extracted, including statistical measurements and interchannel coherence. Feature selection was performed to identify the optimal features, and classification was conducted using different classifiers. Functional connectivity and graph theory measurements were calculated to identify characteristics of refractory TLE. Among the 48 participants, 34 (70.8%) were responsive, while 14 (29.2%) were refractory over a mean follow-up duration of 38.5 months. Coherence feature within the gamma frequency band exhibited the most favorable performance. The light gradient boosting model, employing the mutual information filter-based feature selection method, demonstrated the highest performance (AUROC = 0.821). Compared to the responsive group, interchannel coherence displayed higher values in the refractory group. Interestingly, graph theory measurements using EEG coherence exhibited higher values in the refractory group than in the responsive group. Our study has demonstrated a promising method for the early identification of refractory TLE utilizing machine learning algorithms.

摘要

在癫痫患者中,即使经过充分的抗癫痫药物治疗,仍有 30-40%的患者会出现反复发作,从而导致药物难治性。早期识别药物难治性癫痫对于为这些患者及时提供手术治疗非常重要。在这项研究中,我们分析了发作间期脑电图(EEG)数据,以预测在首次 EEG 采集时接受单药治疗的颞叶癫痫(TLE)患者的药物耐药性。提取了各种 EEG 特征,包括统计测量和通道间相干性。进行特征选择以确定最佳特征,并使用不同的分类器进行分类。计算功能连接和图论测量以识别难治性 TLE 的特征。在 48 名参与者中,34 名(70.8%)有反应,而在平均随访 38.5 个月后,14 名(29.2%)无反应。伽马频带内的相干特征表现出最有利的性能。采用基于互信息滤波的特征选择方法的轻梯度提升模型表现出最高的性能(AUROC=0.821)。与有反应组相比,无反应组的通道间相干性更高。有趣的是,使用 EEG 相干的图论测量在无反应组中显示出比有反应组更高的值。我们的研究表明,利用机器学习算法可以早期识别难治性 TLE,这是一种很有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f0/11372158/c2fd39335aab/41598_2024_71583_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验