Suppr超能文献

癫痫发作检测——一种基于自回归(AR)模型的植入式设备算法。

Epileptic seizure detection - an AR model based algorithm for implantable device.

作者信息

Kim Hyunchul, Rosen Jacob

机构信息

Dept. of Electrical Engineering, University of California Santa Cruz, 1156 High Street, CA 95064-1099, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5541-4. doi: 10.1109/IEMBS.2010.5626784.

Abstract

The algorithm of epileptic seizure is at the core of any implantable device aimed to treat the symptoms of this disorder. A training free (on line) epileptic seizure detection algorithm for implantable device utilizing Autoregressive (AR) model parameters is developed and studied. Pre-recorded (off line) epileptic seizure data are used to estimate the internal parameters of an AR model prior and following the seizure Principle Component Analysis (PCA) is used for reducing the dimension of the problem while allowing only the salient features representing the seizure onset to be saved into the implantable device. The implantable device estimates the AR model parameter in real time and compares the saved features of seizure onset with feature from the incoming signals using cosine similarity. In order to guarantee an efficient on line signal processing, Weighted Least Square Estimation (WLSE) model is utilized. Simulation result shows that the proposed method has average 96.6% detection accuracy and 1.2ms latency for the data sets under study. The proposed approach can be extended to multi channel approach using Multi-Variant Autoregressive (MVAR) model which enables seizure foci localization and the sophisticated seizure prediction.

摘要

癫痫发作算法是任何旨在治疗这种疾病症状的植入式设备的核心。开发并研究了一种利用自回归(AR)模型参数的用于植入式设备的免训练(在线)癫痫发作检测算法。预先记录(离线)的癫痫发作数据用于在癫痫发作之前和之后估计AR模型的内部参数。主成分分析(PCA)用于降低问题的维度,同时仅将表示癫痫发作开始的显著特征保存到植入式设备中。植入式设备实时估计AR模型参数,并使用余弦相似度将保存的癫痫发作开始特征与传入信号的特征进行比较。为了保证高效的在线信号处理,采用了加权最小二乘估计(WLSE)模型。仿真结果表明,对于所研究的数据集,该方法平均检测准确率为96.6%,延迟为1.2毫秒。所提出的方法可以扩展到使用多变量自回归(MVAR)模型的多通道方法,该模型能够实现癫痫病灶定位和复杂的癫痫发作预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验