Suppr超能文献

基于非重叠移动窗口的动态主成分分析及其在癫痫脑电信号分类中的应用

Dynamic principal component analysis with nonoverlapping moving window and its applications to epileptic EEG classification.

作者信息

Xie Shengkun, Krishnan Sridhar

机构信息

Department of Global Management Studies, Ted Rogers School of Management Studies, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3.

Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3.

出版信息

ScientificWorldJournal. 2014 Jan 16;2014:419308. doi: 10.1155/2014/419308. eCollection 2014.

Abstract

Classification of electroencephalography (EEG) is the most useful diagnostic and monitoring procedure for epilepsy study. A reliable algorithm that can be easily implemented is the key to this procedure. In this paper a novel signal feature extraction method based on dynamic principal component analysis and nonoverlapping moving window is proposed. Along with this new technique, two detection methods based on extracted sparse features are applied to deal with signal classification. The obtained results demonstrated that our proposed methodologies are able to differentiate EEGs from controls and interictal for epilepsy diagnosis and to separate EEGs from interictal and ictal for seizure detection. Our approach yields high classification accuracy for both single-channel short-term EEGs and multichannel long-term EEGs. The classification performance of the method is also compared with other state-of-the-art techniques on the same datasets and the effect of signal variability on the presented methods is also studied.

摘要

脑电图(EEG)分类是癫痫研究中最有用的诊断和监测方法。一种易于实现的可靠算法是该方法的关键。本文提出了一种基于动态主成分分析和非重叠移动窗口的新型信号特征提取方法。伴随着这项新技术,应用了两种基于提取的稀疏特征的检测方法来处理信号分类。所得结果表明,我们提出的方法能够区分癫痫诊断中对照组和发作间期的脑电图,并能区分癫痫发作检测中发作间期和发作期的脑电图。我们的方法对于单通道短期脑电图和多通道长期脑电图都具有很高的分类准确率。还在相同数据集上将该方法的分类性能与其他现有技术进行了比较,并研究了信号变异性对所提出方法的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/078c/3914591/02bfea416f5c/TSWJ2014-419308.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验