Suppr超能文献

基于非介入式设备运动信号的睡眠质量多尺度评估

Multi-Scale Evaluation of Sleep Quality Based on Motion Signal from Unobtrusive Device.

机构信息

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, 20133 Milano, Italy.

Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, San Luis Potosí 79615, Mexico.

出版信息

Sensors (Basel). 2022 Jul 15;22(14):5295. doi: 10.3390/s22145295.

Abstract

Sleep disorders are a growing threat nowadays as they are linked to neurological, cardiovascular and metabolic diseases. The gold standard methodology for sleep study is polysomnography (PSG), an intrusive and onerous technique that can disrupt normal routines. In this perspective, m-Health technologies offer an unobtrusive and rapid solution for home monitoring. We developed a multi-scale method based on motion signal extracted from an unobtrusive device to evaluate sleep behavior. Data used in this study were collected during two different acquisition campaigns by using a Pressure Bed Sensor (PBS). The first one was carried out with 22 subjects for sleep problems, and the second one comprises 11 healthy shift workers. All underwent full PSG and PBS recordings. The algorithm consists of extracting sleep quality and fragmentation indexes correlating to clinical metrics. In particular, the method classifies sleep windows of 1-s of the motion signal into: displacement (DI), quiet sleep (QS), disrupted sleep (DS) and absence from the bed (ABS). QS proved to be positively correlated (0.72±0.014) to Sleep Efficiency (SE) and DS/DI positively correlated (0.85±0.007) to the Apnea-Hypopnea Index (AHI). The work proved to be potentially helpful in the early investigation of sleep in the home environment. The minimized intrusiveness of the device together with a low complexity and good performance might provide valuable indications for the home monitoring of sleep disorders and for subjects' awareness.

摘要

睡眠障碍是当今日益严重的威胁,因为它们与神经、心血管和代谢疾病有关。睡眠研究的金标准方法是多导睡眠图(PSG),这是一种侵入性和繁琐的技术,可能会打乱正常作息。从这个角度来看,移动健康技术为家庭监测提供了一种非侵入性和快速的解决方案。我们开发了一种基于从非侵入性设备中提取的运动信号的多尺度方法,用于评估睡眠行为。这项研究使用了在两个不同采集阶段使用压力床传感器(PBS)收集的数据。第一个阶段涉及 22 名有睡眠问题的受试者,第二个阶段包括 11 名健康的轮班工人。所有受试者都接受了完整的 PSG 和 PBS 记录。该算法包括提取与临床指标相关的睡眠质量和碎片化指数。具体来说,该方法将运动信号的 1 秒睡眠窗口分类为:位移(DI)、安静睡眠(QS)、睡眠中断(DS)和离开床(ABS)。QS 与睡眠效率(SE)呈正相关(0.72±0.014),DS/DI 与呼吸暂停低通气指数(AHI)呈正相关(0.85±0.007)。这项工作证明在家庭环境中早期调查睡眠具有潜在的帮助。设备的侵入性最小,复杂性低,性能好,可能为睡眠障碍的家庭监测以及受试者的自我意识提供有价值的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4eff/9323867/b584ec6f9036/sensors-22-05295-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验