Suppr超能文献

用于组织工程应用的坚韧弹性纤维支架的制备与表征

Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications.

作者信息

Sant Shilpa, Khademhosseini Ali

机构信息

Harvard Medical School, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3546-8. doi: 10.1109/IEMBS.2010.5627486.

Abstract

Development of biodegradable tough elastomeric scaffolds are important for engineering tissues such as myocardium and heart valves that experience dynamic environments in vivo. Biomaterial scaffolds should ideally provide appropriate physical, chemical and mechanical cues to the seeded cells to closely mimic the native ECM. Collagen fibers form an important component of native myocardium as well as heart valve leaflets and provide necessary tensile properties to these tissues. Amongst various polymers, collagen mimicking biodegradable elastomer, Poly-(glycerol-sebacate) (PGS) has shown great promise in microfabricated scaffolds for cardiac tissue engineering. However, its use is limited by its solubility and the ability to cast nano-/microfibrous structures. For its superior mechanical properties, thermal or UV crosslinking of the pre-polymer is required under high temperatures and vacuum limiting fabrication of fibers. In this work, we fabricated electrospun PGS fibers were fabricated by simply blending it with biodegradable polycaprolactone (PCL) polymer without any post-processing. It was hypothesized that microfibrous PGS-PCL scaffolds would provide appropriate physical (fibrous structure) and chemical (balanced hydrophilicity and hydrophobicity) to the cells in addition to the mechanical properties.

摘要

可生物降解的坚韧弹性体支架的开发对于工程化诸如心肌和心脏瓣膜等在体内经历动态环境的组织非常重要。理想情况下,生物材料支架应向接种的细胞提供适当的物理、化学和机械信号,以紧密模拟天然细胞外基质。胶原纤维是天然心肌以及心脏瓣膜小叶的重要组成部分,并为这些组织提供必要的拉伸性能。在各种聚合物中,模仿胶原蛋白的可生物降解弹性体聚(甘油 - 癸二酸酯)(PGS)在用于心脏组织工程的微制造支架中显示出巨大的潜力。然而,其应用受到其溶解性以及铸造纳米/微纤维结构能力的限制。由于其优异的机械性能,需要在高温和真空条件下对预聚物进行热交联或紫外线交联,这限制了纤维的制造。在这项工作中,我们通过简单地将其与可生物降解的聚己内酯(PCL)聚合物混合而无需任何后处理来制造电纺PGS纤维。据推测,微纤维PGS - PCL支架除了机械性能外,还将为细胞提供适当的物理(纤维结构)和化学(平衡的亲水性和疏水性)。

相似文献

1
Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3546-8. doi: 10.1109/IEMBS.2010.5627486.
2
Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy.
Adv Healthc Mater. 2014 Jun;3(6):929-39. doi: 10.1002/adhm.201300505. Epub 2014 Jan 22.
3
Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
J Mater Sci Mater Med. 2019 Apr 29;30(5):53. doi: 10.1007/s10856-019-6257-3.
5
Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application.
Adv Healthc Mater. 2015 Sep 16;4(13):2012-25. doi: 10.1002/adhm.201500154. Epub 2015 Aug 13.
6
Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties.
J Tissue Eng Regen Med. 2011 Apr;5(4):283-91. doi: 10.1002/term.313.
7
Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2020 Feb;107:110291. doi: 10.1016/j.msec.2019.110291. Epub 2019 Oct 8.
8
Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents.
Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109712. doi: 10.1016/j.msec.2019.04.091. Epub 2019 Apr 30.
10
Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
Acta Biomater. 2017 Apr 1;52:81-91. doi: 10.1016/j.actbio.2016.12.009. Epub 2016 Dec 8.

引用本文的文献

1
Recent advancements in polymeric heart valves: From basic research to clinical trials.
Mater Today Bio. 2024 Aug 10;28:101194. doi: 10.1016/j.mtbio.2024.101194. eCollection 2024 Oct.
2
Self-assembled Hydrogel Fiber Bundles from Oppositely Charged Polyelectrolytes Mimic Micro-/nanoscale Hierarchy of Collagen.
Adv Funct Mater. 2017 Sep 26;27(36). doi: 10.1002/adfm.201606273. Epub 2017 Aug 16.
3
Electrospun Zein Fibers Incorporating Poly(glycerol sebacate) for Soft Tissue Engineering.
Nanomaterials (Basel). 2018 Mar 8;8(3):150. doi: 10.3390/nano8030150.
4
Tri-layered elastomeric scaffolds for engineering heart valve leaflets.
Biomaterials. 2014 Sep;35(27):7774-85. doi: 10.1016/j.biomaterials.2014.04.039. Epub 2014 Jun 16.

本文引用的文献

2
Geometry and force control of cell function.
J Cell Biochem. 2009 Dec 1;108(5):1047-58. doi: 10.1002/jcb.22355.
3
Applications of microscale technologies for regenerative dentistry.
J Dent Res. 2009 May;88(5):409-21. doi: 10.1177/0022034509334774.
4
Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation.
Biomaterials. 2009 Jul;30(20):3405-14. doi: 10.1016/j.biomaterials.2009.02.046. Epub 2009 Apr 9.
5
Controlled cellular orientation on PLGA microfibers with defined diameters.
Biomed Microdevices. 2009 Aug;11(4):739-46. doi: 10.1007/s10544-009-9287-7.
7
Accordion-like honeycombs for tissue engineering of cardiac anisotropy.
Nat Mater. 2008 Dec;7(12):1003-10. doi: 10.1038/nmat2316. Epub 2008 Nov 2.
8
Electrospun nanofiber scaffolds: engineering soft tissues.
Biomed Mater. 2008 Sep;3(3):034002. doi: 10.1088/1748-6041/3/3/034002. Epub 2008 Aug 8.
9
Biodegradable and radically polymerized elastomers with enhanced processing capabilities.
Biomed Mater. 2008 Sep;3(3):034104. doi: 10.1088/1748-6041/3/3/034104. Epub 2008 Aug 8.
10
Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering.
Langmuir. 2008 Jun 1;24(13):6845-51. doi: 10.1021/la800253b. Epub 2008 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验