Suppr超能文献

应用机器学习检测心冲击图中的单个心跳。

Applying machine learning to detect individual heart beats in ballistocardiograms.

作者信息

Bruser Christoph, Stadlthanner Kurt, Brauers Andreas, Leonhardt Steffen

机构信息

Philips Chair for Medical Information Technology, RWTH Aachen University, Germany.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1926-9. doi: 10.1109/IEMBS.2010.5628077.

Abstract

Ballistocardiography is a technique in which the mechanical activity of the heart is recorded. We present a novel algorithm for the detection of individual heart beats in ballistocardiograms (BCGs). In a training step, unsupervised learning techniques are used to identify the shape of a single heart beat in the BCG. The learned parameters are combined with so-called "heart valve components" to detect the occurrence of individual heart beats in the signal. A refinement step improves the accuracy of the estimated beat-to-beat interval lengths. Compared to other algorithms this new approach offers heart rate estimates on a beat-to-beat basis and is designed to cope with arrhythmias. The proposed algorithm has been evaluated in laboratory and home settings for its agreement with an ECG reference. A beat-to-beat interval error of 14.16 ms with a coverage of 96.87% was achieved. Averaged over 10 s long epochs, the mean heart rate error was 0.39 bpm.

摘要

心冲击图描记法是一种记录心脏机械活动的技术。我们提出了一种用于检测心冲击图(BCG)中单个心跳的新算法。在训练步骤中,使用无监督学习技术来识别BCG中单个心跳的形状。将学习到的参数与所谓的“心脏瓣膜成分”相结合,以检测信号中单个心跳的出现。一个细化步骤提高了估计的逐搏间期长度的准确性。与其他算法相比,这种新方法提供逐搏心率估计,并设计用于应对心律失常。所提出的算法已在实验室和家庭环境中进行评估,以检验其与心电图参考值的一致性。实现了14.16毫秒的逐搏间期误差,覆盖率为96.87%。在10秒长的时段上进行平均,平均心率误差为0.39次/分钟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验