IEEE Trans Biomed Eng. 2018 Nov;65(11):2634-2648. doi: 10.1109/TBME.2018.2812602. Epub 2018 Mar 6.
A multiple instance dictionary learning approach, dictionary learning using functions of multiple instances (DL-FUMI), is used to perform beat-to-beat heart rate estimation and to characterize heartbeat signatures from ballistocardiogram (BCG) signals collected with a hydraulic bed sensor. DL-FUMI estimates a "heartbeat concept" that represents an individual's personal ballistocardiogram heartbeat pattern. DL-FUMI formulates heartbeat detection and heartbeat characterization as a multiple instance learning problem to address the uncertainty inherent in aligning BCG signals with ground truth during training. Experimental results show that the estimated heartbeat concept obtained by DL-FUMI is an effective heartbeat prototype and achieves superior performance over comparison algorithms.
一种多实例字典学习方法,即使用多实例函数的字典学习(DL-FUMI),用于进行逐拍心率估计,并从使用液力床传感器采集的心动描记图(BCG)信号中描述心跳特征。DL-FUMI 估计了一个“心跳概念”,代表个体的个人心动描记图心跳模式。DL-FUMI 将心跳检测和心跳特征描述为一个多实例学习问题,以解决在训练过程中用 BCG 信号与真实值对齐所固有的不确定性。实验结果表明,通过 DL-FUMI 估计的心跳概念是一种有效的心跳原型,并且优于比较算法的性能。