Suppr超能文献

基于心动冲击图的逐拍心率监测的多重实例字典学习。

Multiple Instance Dictionary Learning for Beat-to-Beat Heart Rate Monitoring From Ballistocardiograms.

出版信息

IEEE Trans Biomed Eng. 2018 Nov;65(11):2634-2648. doi: 10.1109/TBME.2018.2812602. Epub 2018 Mar 6.

Abstract

A multiple instance dictionary learning approach, dictionary learning using functions of multiple instances (DL-FUMI), is used to perform beat-to-beat heart rate estimation and to characterize heartbeat signatures from ballistocardiogram (BCG) signals collected with a hydraulic bed sensor. DL-FUMI estimates a "heartbeat concept" that represents an individual's personal ballistocardiogram heartbeat pattern. DL-FUMI formulates heartbeat detection and heartbeat characterization as a multiple instance learning problem to address the uncertainty inherent in aligning BCG signals with ground truth during training. Experimental results show that the estimated heartbeat concept obtained by DL-FUMI is an effective heartbeat prototype and achieves superior performance over comparison algorithms.

摘要

一种多实例字典学习方法,即使用多实例函数的字典学习(DL-FUMI),用于进行逐拍心率估计,并从使用液力床传感器采集的心动描记图(BCG)信号中描述心跳特征。DL-FUMI 估计了一个“心跳概念”,代表个体的个人心动描记图心跳模式。DL-FUMI 将心跳检测和心跳特征描述为一个多实例学习问题,以解决在训练过程中用 BCG 信号与真实值对齐所固有的不确定性。实验结果表明,通过 DL-FUMI 估计的心跳概念是一种有效的心跳原型,并且优于比较算法的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验