Pan Dipanjan, Pramanik Manojit, Senpan Angana, Allen John S, Zhang Huiying, Wickline Samuel A, Wang Lihong V, Lanza Gregory M
Department of Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA.
FASEB J. 2011 Mar;25(3):875-82. doi: 10.1096/fj.10-171728. Epub 2010 Nov 19.
Photoacoustic tomography (PAT) combines optical and acoustic imaging to generate high-resolution images of microvasculature. Inherent sensitivity to hemoglobin permits PAT to image blood vessels but precludes discriminating neovascular from maturing microvasculature. α(v)β(3)-Gold nanobeacons (α(v)β(3)-GNBs) for neovascular molecular PAT were developed, characterized, and demonstrated in vivo using a mouse Matrigel-plug model of angiogenesis. PAT results were microscopically corroborated with fluorescent α(v)β(3)-GNB localization and supporting immunohistology in Rag1(tm1Mom) Tg(Tie-2-lacZ)182-Sato mice. α(v)β(3)-GNBs (154 nm) had 10-fold greater contrast than blood on an equivolume basis when imaged at 740 nm to 810 nm in blood. The lowest detectable concentration in buffer was 290 nM at 780 nm. Noninvasive PAT of angiogenesis using a 10-MHz ultrasound receiver with α(v)β(3)-GNBs produced a 600% increase in signal in a Matrigel-plug mouse model relative to the inherent hemoglobin contrast pretreatment. In addition to increasing the contrast of neovessels detected at baseline, α(v)β(3)-GNBs allowed visualization of numerous angiogenic sprouts and bridges that were undetectable before contrast injection. Competitive inhibition of α(v)β(3)-GNBs with α(v)β(3)-NBs (no gold particles) almost completely blocked contrast enhancement to pretreatment levels, similar to the signal from animals receiving saline only. Consistent with other studies, nontargeted GNBs passively accumulated in the tortuous neovascular but provided less than half of the contrast enhancement of the targeted agent. Microscopic studies revealed that the vascular constrained, rhodamine-labeled α(v)β(3)-GNBs homed specifically to immature neovasculature (PECAM(+), Tie-2(-)) along the immediate tumor periphery, but not to nearby mature microvasculature (PECAM(+), Tie-2(+)). The combination of PAT and α(v)β(3)-GNBs offered sensitive and specific discrimination and quantification of angiogenesis in vivo, which may be clinically applicable to a variety of highly prevalent diseases, including cancer and cardiovascular disease.
光声断层扫描(PAT)结合了光学成像和声学成像,以生成微血管的高分辨率图像。对血红蛋白的固有敏感性使PAT能够对血管进行成像,但无法区分新生血管和成熟微血管。我们开发、表征了用于新生血管分子PAT的α(v)β(3)-金纳米信标(α(v)β(3)-GNBs),并使用小鼠基质胶栓血管生成模型在体内进行了验证。PAT结果通过荧光α(v)β(3)-GNB定位以及Rag1(tm1Mom) Tg(Tie-2-lacZ)182-Sato小鼠的支持性免疫组织学在显微镜下得到了证实。α(v)β(3)-GNBs(154纳米)在血液中于740纳米至810纳米成像时,在等体积基础上的对比度比血液高10倍。在780纳米时,缓冲液中可检测到的最低浓度为290纳摩尔。在小鼠基质胶栓模型中,使用10兆赫超声接收器和α(v)β(3)-GNBs进行血管生成的无创PAT,相对于固有血红蛋白对比度预处理,信号增加了600%。除了增加基线时检测到的新生血管的对比度外,α(v)β(3)-GNBs还能使许多在注射造影剂前无法检测到的血管生成芽和桥可视化。用α(v)β(3)-NBs(无金颗粒)对α(v)β(3)-GNBs进行竞争性抑制几乎完全将对比度增强阻断至预处理水平,类似于仅接受生理盐水的动物的信号。与其他研究一致,非靶向GNBs被动积聚在迂曲的新生血管中,但提供的对比度增强不到靶向剂的一半。显微镜研究表明,血管受限、罗丹明标记的α(v)β(3)-GNBs特异性归巢到肿瘤周边紧邻处的未成熟新生血管(PECAM(+),Tie-2(-)),而不是附近的成熟微血管(PECAM(+),Tie-2(+))。PAT与α(v)β(3)-GNBs的结合在体内提供了对血管生成的敏感且特异的鉴别和定量,这在临床上可能适用于多种高度常见的疾病,包括癌症和心血管疾病。
Contrast Media Mol Imaging. 2011
Angew Chem Int Ed Engl. 2009
Biomaterials. 2010-2-20
Acad Radiol. 2004-1
Nanomedicine (Lond). 2024-7-2
J Biomed Opt. 2022-7
Front Physiol. 2022-10-19
Nanoscale Adv. 2020-7-16
Nanoscale Adv. 2018-12-13
Biomaterials. 2010-2-20
Nat Nanotechnol. 2009-11-1
J Biophotonics. 2009-12
J Phys Chem C Nanomater Interfaces. 2009-5-28
Opt Express. 2005-1-10
Angew Chem Int Ed Engl. 2009
Phys Med Biol. 2009-2-21