Cho Eun Chul, Kim Chulhong, Zhou Fei, Cobley Claire M, Song Kwang Hyun, Chen Jingyi, Li Zhi-Yuhan, Wang Lihong V, Xia Younan
Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130.
J Phys Chem C Nanomater Interfaces. 2009 May 28;113(21):9023-9028. doi: 10.1021/jp903343p.
This paper presents a method for measuring the optical absorption cross-sections (σ(a)) of Au-Ag nanocages and Au nanorods. The method is based on photoacoustic (PA) imaging, where the detected signal is directly proportional to the absorption coefficient (μ(a)) of the nanostructure. For each type of nanostructure, we firstly obtained μ(a) from the PA signal by benchmarking against a linear calibration curve (PA signal vs. μ(a)) derived from a set of methylene blue solutions with different concentrations. We then calculated σ(a) by dividing the μ(a) by the corresponding concentration of the Au nanostructure. Additonally, we obtained the extinction cross-section (σ(e), sum of absorption and scattering) from the extinction spectrum recorded using a conventional UV-vis-NIR spectrometer. From the measurements of σ(a) and σ(e), we were able to easily derive both the absorption and scattering cross-sections for each type of gold nanostructure. The ratios of absorption to extinction obtained from experimental and theoretical approaches agreed well, demonstrating the potential use of this method in determining the optical absorption and scattering properties of gold nanostructures and other types of nanomaterials.
本文提出了一种测量金-银纳米笼和金纳米棒光学吸收截面(σ(a))的方法。该方法基于光声(PA)成像,其中检测到的信号与纳米结构的吸收系数(μ(a))成正比。对于每种类型的纳米结构,我们首先通过与一组不同浓度亚甲基蓝溶液得到的线性校准曲线(PA信号与μ(a))进行基准比对,从PA信号中获得μ(a)。然后,我们通过将μ(a)除以金纳米结构的相应浓度来计算σ(a)。此外,我们使用传统的紫外-可见-近红外光谱仪从记录的消光光谱中获得消光截面(σ(e),吸收和散射之和)。通过对σ(a)和σ(e)的测量,我们能够轻松得出每种类型金纳米结构的吸收和散射截面。从实验和理论方法获得的吸收与消光之比吻合良好,证明了该方法在确定金纳米结构和其他类型纳米材料的光学吸收和散射特性方面的潜在用途。