Suppr超能文献

链球菌 CpsA 蛋白的膜拓扑结构和 DNA 结合能力。

Membrane topology and DNA-binding ability of the Streptococcal CpsA protein.

机构信息

Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.

出版信息

J Bacteriol. 2011 Jan;193(2):411-20. doi: 10.1128/JB.01098-10. Epub 2010 Nov 19.

Abstract

Many streptococcal pathogens require a polysaccharide capsule for survival in the host during systemic infection. The highly conserved CpsA protein is proposed to be a transcriptional regulator of capsule production in streptococci, although the regulatory mechanism is unknown. Hydropathy plots of CpsA predict an integral membrane protein with 3 transmembrane domains and only 27 cytoplasmic residues, whereas other members of the LytR_cpsA_psr protein family are predicted to have a single transmembrane domain. This unique topology, with the short cytoplasmic domain, membrane localization, and large extracellular domain, suggests a novel mechanism of transcriptional regulation. Therefore, to determine the actual membrane topology of CpsA, specific protein domains were fused to beta-galactosidase or alkaline phosphatase. Enzymatic assays confirmed that the predicted membrane topology for CpsA is correct. To investigate how this integral membrane protein may be functioning in regulation of capsule transcription, purified full-length and truncated forms of CpsA were used in electrophoretic mobility shift assays to characterize the ability to bind the capsule operon promoter. Assays revealed that full-length, purified CpsA protein binds specifically to DNA containing the capsule promoter region. Furthermore, the large extracellular domain is not required for DNA binding, but all cytoplasmic regions of CpsA are necessary and sufficient for specific binding to the capsule operon promoter. This is the first demonstration of a member of this protein family interacting with its target DNA. Taken together, CpsA, as well as other members of the LytR_cpsA_psr protein family, appears to utilize a unique mechanism of transcriptional regulation.

摘要

许多链球菌病原体需要多糖荚膜才能在全身感染期间在宿主体内存活。CpsA 蛋白高度保守,据推测它是链球菌荚膜产生的转录调节剂,尽管其调节机制尚不清楚。CpsA 的疏水性图预测它是一种具有 3 个跨膜结构域和仅 27 个细胞质残基的完整膜蛋白,而 LytR_cpsA_psr 蛋白家族的其他成员则预测具有单个跨膜结构域。这种独特的拓扑结构,具有短的细胞质结构域、膜定位和大的细胞外结构域,表明存在一种新的转录调节机制。因此,为了确定 CpsA 的实际膜拓扑结构,将特定的蛋白质结构域融合到β-半乳糖苷酶或碱性磷酸酶中。酶测定证实了 CpsA 的预测膜拓扑结构是正确的。为了研究这种完整的膜蛋白如何在调节荚膜转录中发挥作用,使用纯化的全长和截断形式的 CpsA 进行电泳迁移率变动分析,以表征结合荚膜操纵子启动子的能力。分析表明,全长、纯化的 CpsA 蛋白特异性结合含有荚膜启动子区域的 DNA。此外,不需要大的细胞外结构域进行 DNA 结合,但 CpsA 的所有细胞质区域对于与荚膜操纵子启动子的特异性结合都是必需和充分的。这是首次证明该蛋白质家族的成员与目标 DNA 相互作用。总之,CpsA 以及 LytR_cpsA_psr 蛋白家族的其他成员似乎利用一种独特的转录调节机制。

相似文献

1
Membrane topology and DNA-binding ability of the Streptococcal CpsA protein.
J Bacteriol. 2011 Jan;193(2):411-20. doi: 10.1128/JB.01098-10. Epub 2010 Nov 19.
2
Functional analysis of the CpsA protein of Streptococcus agalactiae.
J Bacteriol. 2012 Apr;194(7):1668-78. doi: 10.1128/JB.06373-11. Epub 2012 Jan 27.
3
Phylogenetic distribution and membrane topology of the LytR-CpsA-Psr protein family.
BMC Genomics. 2008 Dec 19;9:617. doi: 10.1186/1471-2164-9-617.
4
Modification of the CpsA protein reveals a role in alteration of the Streptococcus agalactiae cell envelope.
Infect Immun. 2015 Apr;83(4):1497-506. doi: 10.1128/IAI.02656-14. Epub 2015 Feb 2.
6
Characterization of ExsA and of ExsA-dependent promoters required for expression of the Pseudomonas aeruginosa type III secretion system.
Mol Microbiol. 2008 May;68(3):657-71. doi: 10.1111/j.1365-2958.2008.06179.x. Epub 2008 Mar 25.
7
Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter.
J Mol Biol. 2008 Feb 15;376(2):325-37. doi: 10.1016/j.jmb.2007.12.004. Epub 2007 Dec 8.
8
Point mutations within the streptococcal regulator of virulence (Srv) alter protein-DNA interactions and Srv function.
Microbiology (Reading). 2008 Jul;154(Pt 7):1998-2007. doi: 10.1099/mic.0.2007/013466-0.
10
Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus.
J Bacteriol. 2003 Sep;185(18):5431-41. doi: 10.1128/JB.185.18.5431-5441.2003.

引用本文的文献

1
SPD_0410 negatively regulates capsule polysaccharide synthesis and virulence in D39.
Front Microbiol. 2025 Jan 3;15:1513884. doi: 10.3389/fmicb.2024.1513884. eCollection 2024.
2
Encapsulation of the septal cell wall protects Streptococcus pneumoniae from its major peptidoglycan hydrolase and host defenses.
PLoS Pathog. 2022 Jun 22;18(6):e1010516. doi: 10.1371/journal.ppat.1010516. eCollection 2022 Jun.
3
LcpB Is a Pyrophosphatase Responsible for Wall Teichoic Acid Synthesis and Virulence in Clinical Isolate ST59.
Front Microbiol. 2021 Dec 16;12:788500. doi: 10.3389/fmicb.2021.788500. eCollection 2021.
4
Independent Promoter Recognition by TcpP Precedes Cooperative Promoter Activation by TcpP and ToxR.
mBio. 2021 Oct 26;12(5):e0221321. doi: 10.1128/mBio.02213-21. Epub 2021 Sep 7.
5
Polyamine Synthesis Effects Capsule Expression by Reduction of Precursors in .
Front Microbiol. 2019 Aug 29;10:1996. doi: 10.3389/fmicb.2019.01996. eCollection 2019.
6
Exopolysaccharide Biosynthesis, a Tool to Improve Malolactic Starter Performance.
Front Microbiol. 2018 Jun 12;9:1276. doi: 10.3389/fmicb.2018.01276. eCollection 2018.
8
Expression of BrpA in Streptococcus mutans is regulated by FNR-box mediated repression.
Mol Oral Microbiol. 2017 Dec;32(6):517-525. doi: 10.1111/omi.12193. Epub 2017 Aug 24.

本文引用的文献

1
MsrR contributes to cell surface characteristics and virulence in Staphylococcus aureus.
FEMS Microbiol Lett. 2009 Jun;295(2):251-60. doi: 10.1111/j.1574-6968.2009.01603.x. Epub 2009 May 1.
2
Phylogenetic distribution and membrane topology of the LytR-CpsA-Psr protein family.
BMC Genomics. 2008 Dec 19;9:617. doi: 10.1186/1471-2164-9-617.
3
Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins.
Microbiology (Reading). 2008 Dec;154(Pt 12):3609-3623. doi: 10.1099/mic.0.2008/022772-0.
4
Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005.
JAMA. 2008 May 7;299(17):2056-65. doi: 10.1001/jama.299.17.2056.
6
Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence.
Infect Immun. 2007 Mar;75(3):1255-64. doi: 10.1128/IAI.01484-06. Epub 2006 Dec 28.
7
Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish.
J Bacteriol. 2007 Feb;189(4):1279-87. doi: 10.1128/JB.01175-06. Epub 2006 Nov 10.
8
Influence of BrpA on critical virulence attributes of Streptococcus mutans.
J Bacteriol. 2006 Apr;188(8):2983-92. doi: 10.1128/JB.188.8.2983-2992.2006.
9
Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells.
Infect Immun. 2005 Aug;73(8):4653-67. doi: 10.1128/IAI.73.8.4653-4667.2005.
10
Contribution of biofilm regulatory protein A of Streptococcus mutans, to systemic virulence.
Microbes Infect. 2005 Aug-Sep;7(11-12):1246-55. doi: 10.1016/j.micinf.2005.04.012. Epub 2005 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验