Suppr超能文献

对无乳链球菌 CpsA 蛋白的功能分析。

Functional analysis of the CpsA protein of Streptococcus agalactiae.

机构信息

Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA.

出版信息

J Bacteriol. 2012 Apr;194(7):1668-78. doi: 10.1128/JB.06373-11. Epub 2012 Jan 27.

Abstract

Streptococcal pathogens, such as the group B streptococcus (GBS) Streptococcus agalactiae, are an important cause of systemic disease, which is facilitated in part by the presence of a polysaccharide capsule. The CpsA protein is a putative transcriptional regulator of the capsule locus, but its exact contribution to regulation is unknown. To address the role of CpsA in regulation, full-length GBS CpsA and two truncated forms of the protein were purified and analyzed for DNA-binding ability. Assays demonstrated that CpsA is able to bind specifically to two putative promoters within the capsule operon with similar affinity, and full-length protein is required for specificity. Functional characterization of CpsA confirmed that the ΔcpsA strain produced less capsule than did the wild type and demonstrated that the production of full-length CpsA or the DNA-binding region of CpsA resulted in increased capsule levels. In contrast, the production of a truncated form of CpsA lacking the extracellular LytR domain (CpsA-245) in the wild-type background resulted in a dominant-negative decrease in capsule production. GBS expressing CpsA-245, but not the ΔcpsA strain, was attenuated in human whole blood. However, the ΔcpsA strain showed significant attenuation in a zebrafish infection model. Furthermore, chain length was observed to be variable in a CpsA-dependent manner, but could be restored to wild-type levels when grown with lysozyme. Taken together, these results suggest that CpsA is a modular protein influencing multiple regulatory functions that may include not only capsule synthesis but also cell wall associated factors.

摘要

链球菌病原体,如 B 组链球菌(GBS),是导致全身性疾病的重要原因,其部分原因是存在多糖荚膜。CpsA 蛋白是荚膜基因座的假定转录调节因子,但它对调节的确切贡献尚不清楚。为了研究 CpsA 在调节中的作用,纯化了全长 GBS CpsA 和两种截短形式的蛋白质,并分析了其 DNA 结合能力。实验表明,CpsA 能够特异性地结合到荚膜操纵子内的两个假定启动子上,亲和力相似,全长蛋白是特异性所必需的。CpsA 的功能特征证实,ΔcpsA 株产生的荚膜比野生型少,并表明全长 CpsA 或 CpsA 的 DNA 结合区的产生导致荚膜水平增加。相比之下,在野生型背景下缺失细胞外 LytR 结构域(CpsA-245)的 CpsA 截短形式的产生导致荚膜产生的显性负性降低。表达 CpsA-245 的 GBS,但不是ΔcpsA 株,在人全血中表现出衰减。然而,在斑马鱼感染模型中,ΔcpsA 株显示出显著的衰减。此外,观察到链长以 CpsA 依赖的方式变化,但当与溶菌酶一起生长时,可以恢复到野生型水平。总之,这些结果表明 CpsA 是一种影响多种调节功能的模块化蛋白质,这些功能可能不仅包括荚膜合成,还包括与细胞壁相关的因素。

相似文献

1
Functional analysis of the CpsA protein of Streptococcus agalactiae.
J Bacteriol. 2012 Apr;194(7):1668-78. doi: 10.1128/JB.06373-11. Epub 2012 Jan 27.
2
Modification of the CpsA protein reveals a role in alteration of the Streptococcus agalactiae cell envelope.
Infect Immun. 2015 Apr;83(4):1497-506. doi: 10.1128/IAI.02656-14. Epub 2015 Feb 2.
3
Membrane topology and DNA-binding ability of the Streptococcal CpsA protein.
J Bacteriol. 2011 Jan;193(2):411-20. doi: 10.1128/JB.01098-10. Epub 2010 Nov 19.
4
Streptococcus agalactiae capsule polymer length and attachment is determined by the proteins CpsABCD.
J Biol Chem. 2015 Apr 10;290(15):9521-32. doi: 10.1074/jbc.M114.631499. Epub 2015 Feb 9.
5
Identification of two genes, cpsX and cpsY, with putative regulatory function on capsule expression in group B streptococci.
FEMS Immunol Med Microbiol. 1998 Jun;21(2):159-68. doi: 10.1111/j.1574-695X.1998.tb01162.x.
7
Analysis of RogB-controlled virulence mechanisms and gene repression in Streptococcus agalactiae.
Infect Immun. 2003 Sep;71(9):5056-64. doi: 10.1128/IAI.71.9.5056-5064.2003.
8
The two-component response regulator LiaR regulates cell wall stress responses, pili expression and virulence in group B Streptococcus.
Microbiology (Reading). 2013 Jul;159(Pt 7):1521-1534. doi: 10.1099/mic.0.064444-0. Epub 2013 May 23.
10
The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood.
Infect Immun. 2017 Dec 19;86(1). doi: 10.1128/IAI.00612-17. Print 2018 Jan.

引用本文的文献

1
SPD_0410 negatively regulates capsule polysaccharide synthesis and virulence in D39.
Front Microbiol. 2025 Jan 3;15:1513884. doi: 10.3389/fmicb.2024.1513884. eCollection 2024.
2
Antimicrobial Resistance and Virulence Genes of Isolated from Mastitis Milk Samples in China.
J Vet Res. 2022 Dec 16;66(4):581-590. doi: 10.2478/jvetres-2022-0069. eCollection 2022 Dec.
3
A Novel Conserved Protein in Streptococcus agalactiae, BvaP, Is Important for Vaginal Colonization and Biofilm Formation.
mSphere. 2022 Dec 21;7(6):e0042122. doi: 10.1128/msphere.00421-22. Epub 2022 Oct 11.
4
CRISPR Contributes to Adhesion, Invasion, and Biofilm Formation in Streptococcus agalactiae by Repressing Capsular Polysaccharide Production.
Microbiol Spectr. 2022 Aug 31;10(4):e0211321. doi: 10.1128/spectrum.02113-21. Epub 2022 Jul 21.
5
Encapsulation of the septal cell wall protects Streptococcus pneumoniae from its major peptidoglycan hydrolase and host defenses.
PLoS Pathog. 2022 Jun 22;18(6):e1010516. doi: 10.1371/journal.ppat.1010516. eCollection 2022 Jun.
6
The LCP Family Protein, Psr, Is Required for Cell Wall Integrity and Virulence in .
Microorganisms. 2022 Jan 20;10(2):217. doi: 10.3390/microorganisms10020217.
9
Regulation of (p)ppGpp and Its Homologs on Environmental Adaptation, Survival, and Pathogenicity of Streptococci.
Front Microbiol. 2020 Sep 25;11:1842. doi: 10.3389/fmicb.2020.01842. eCollection 2020.
10
Progress toward a group B streptococcal vaccine.
Hum Vaccin Immunother. 2018;14(11):2669-2681. doi: 10.1080/21645515.2018.1493326. Epub 2018 Jul 16.

本文引用的文献

1
Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?
Curr Opin Microbiol. 2011 Oct;14(5):544-9. doi: 10.1016/j.mib.2011.07.029. Epub 2011 Aug 20.
2
Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation.
Annu Rev Microbiol. 2011;65:563-81. doi: 10.1146/annurev.micro.62.081307.162944.
6
Membrane topology and DNA-binding ability of the Streptococcal CpsA protein.
J Bacteriol. 2011 Jan;193(2):411-20. doi: 10.1128/JB.01098-10. Epub 2010 Nov 19.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验