Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, USA.
Nucleic Acids Res. 2011 Mar;39(6):2416-31. doi: 10.1093/nar/gkq1096. Epub 2010 Nov 19.
Riboswitches are non-coding RNAs that control gene expression by sensing small molecules through changes in secondary structure. While secondary structure and ligand interactions are thought to control switching, the exact mechanism of control is unknown. Using a novel two-piece assay that competes the anti-terminator against the aptamer, we directly monitor the process of switching. We find that the stabilization of key tertiary contacts controls both aptamer domain collapse and the switching of the SAM-I riboswitch from the aptamer to the expression platform conformation. Our experiments demonstrate that SAM binding induces structural alterations that indirectly stabilize the aptamer domain, preventing switching toward the expression platform conformer. These results, combined with a variety of structural probing experiments performed in this study, show that the collapse and stabilization of the aptamer domain are cooperative, relying on the sum of key tertiary contacts and the bimodal stability of the kink-turn motif for function. Here, ligand binding serves to shift the equilibrium of aptamer domain structures from a more open toward a more stable collapsed form by stabilizing tertiary interactions. Our data show that the thermodynamic landscape for riboswitch operation is finely balanced to allow large conformational rearrangements to be controlled by small molecule interactions.
核糖开关是通过改变二级结构来感应小分子从而控制基因表达的非编码 RNA。虽然二级结构和配体相互作用被认为可以控制开关,但具体的控制机制尚不清楚。我们使用一种新颖的两片式测定法,通过与反终止子竞争来对抗适体,直接监测开关的过程。我们发现,关键三级接触的稳定化控制了适体结构域的崩溃和 SAM-I 核糖开关从适体到表达平台构象的切换。我们的实验表明,SAM 结合诱导了结构改变,这些改变间接稳定了适体结构域,从而阻止了向表达平台构象的切换。这些结果,结合本研究中进行的各种结构探测实验,表明适体结构域的崩溃和稳定是协同的,依赖于关键三级接触的总和和扭结-turn 基序的双峰稳定性以发挥功能。在这里,配体结合通过稳定三级相互作用,将适体结构域的平衡从更开放的形式转移到更稳定的崩溃形式,从而改变平衡。我们的数据表明,核糖开关操作的热力学景观是精细平衡的,允许通过小分子相互作用来控制大的构象重排。