Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA.
Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA.
Nat Chem Biol. 2018 Mar;14(3):276-283. doi: 10.1038/nchembio.2548. Epub 2018 Jan 15.
The discovery of functional RNAs that are critical for normal and disease physiology continues to expand at a breakneck pace. Many RNA functions are controlled by the formation of specific structures, and an understanding of each structural component is necessary to elucidate its function. Measuring solvent accessibility intracellularly with experimental ease is an unmet need in the field. Here, we present a novel method for probing nucleobase solvent accessibility, Light Activated Structural Examination of RNA (LASER). LASER depends on light activation of a small molecule, nicotinoyl azide (NAz), to measure solvent accessibility of purine nucleobases. In vitro, this technique accurately monitors solvent accessibility and identifies rapid structural changes resulting from ligand binding in a metabolite-responsive RNA. LASER probing can further identify cellular RNA-protein interactions and unique intracellular RNA structures. Our photoactivation technique provides an adaptable framework to structurally characterize solvent accessibility of RNA in many environments.
功能 RNA 的发现对于正常和疾病生理学至关重要,其研究进展速度正在迅速加快。许多 RNA 功能受特定结构形成的控制,为了阐明其功能,有必要了解每个结构组件。在该领域,用实验方法轻松测量细胞内溶剂可及性是一个尚未满足的需求。在这里,我们提出了一种探测核碱基溶剂可及性的新方法,即光激活 RNA 结构检测(LASER)。LASER 依赖于小分子烟酰基叠氮化物(NAz)的光激活来测量嘌呤核碱基的溶剂可及性。在体外,该技术可以准确监测溶剂可及性,并识别出由于配体结合而导致的快速结构变化,这种变化发生在对代谢物有响应的 RNA 中。LASER 探测还可以识别细胞内 RNA-蛋白质相互作用和独特的细胞内 RNA 结构。我们的光激活技术为在许多环境中对 RNA 的溶剂可及性进行结构特征分析提供了一个适应性强的框架。