Suppr超能文献

跨平台微阵列数据标准化用于调控网络推断。

Cross-platform microarray data normalisation for regulatory network inference.

机构信息

Centre for Scientific Computing and Complex Systems Modelling, Dublin City University, Dublin, Ireland.

出版信息

PLoS One. 2010 Nov 12;5(11):e13822. doi: 10.1371/journal.pone.0013822.

Abstract

BACKGROUND

Inferring Gene Regulatory Networks (GRNs) from time course microarray data suffers from the dimensionality problem created by the short length of available time series compared to the large number of genes in the network. To overcome this, data integration from diverse sources is mandatory. Microarray data from different sources and platforms are publicly available, but integration is not straightforward, due to platform and experimental differences.

METHODS

We analyse here different normalisation approaches for microarray data integration, in the context of reverse engineering of GRN quantitative models. We introduce two preprocessing approaches based on existing normalisation techniques and provide a comprehensive comparison of normalised datasets.

CONCLUSIONS

Results identify a method based on a combination of Loess normalisation and iterative K-means as best for time series normalisation for this problem.

摘要

背景

从时间序列微阵列数据推断基因调控网络 (GRN) 受到可用时间序列的长度相对于网络中的大量基因较短而产生的维数问题的影响。为了克服这一问题,必须从不同的来源进行数据集成。来自不同来源和平台的微阵列数据是公开可用的,但由于平台和实验差异,集成并不简单。

方法

在这里,我们分析了不同的微阵列数据整合归一化方法,在定量模型反向工程的背景下。我们引入了两种基于现有归一化技术的预处理方法,并对归一化数据集进行了全面比较。

结论

结果确定了一种基于 Loess 归一化和迭代 K-均值组合的方法,该方法最适合此问题的时间序列归一化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dffe/2980467/4f8e8057529b/pone.0013822.g001.jpg

相似文献

1
Cross-platform microarray data normalisation for regulatory network inference.
PLoS One. 2010 Nov 12;5(11):e13822. doi: 10.1371/journal.pone.0013822.
2
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115. doi: 10.1186/s12918-018-0635-1.
3
A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data.
IEEE/ACM Trans Comput Biol Bioinform. 2015 Jan-Feb;12(1):123-35. doi: 10.1109/TCBB.2014.2343951.
4
Discovering time-lagged rules from microarray data using gene profile classifiers.
BMC Bioinformatics. 2011 Apr 27;12:123. doi: 10.1186/1471-2105-12-123.
6
Comparison of evolutionary algorithms in gene regulatory network model inference.
BMC Bioinformatics. 2010 Jan 27;11:59. doi: 10.1186/1471-2105-11-59.
8
Reverse engineering module networks by PSO-RNN hybrid modeling.
BMC Genomics. 2009 Jul 7;10 Suppl 1(Suppl 1):S15. doi: 10.1186/1471-2164-10-S1-S15.
10
A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets.
BMC Syst Biol. 2014;8 Suppl 3(Suppl 3):S1. doi: 10.1186/1752-0509-8-S3-S1. Epub 2014 Oct 22.

引用本文的文献

1
Improving gene regulatory network inference and assessment: The importance of using network structure.
Front Genet. 2023 Feb 27;14:1143382. doi: 10.3389/fgene.2023.1143382. eCollection 2023.
3
Alternative empirical Bayes models for adjusting for batch effects in genomic studies.
BMC Bioinformatics. 2018 Jul 13;19(1):262. doi: 10.1186/s12859-018-2263-6.
4
Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks.
Microarrays (Basel). 2015 May 14;4(2):255-69. doi: 10.3390/microarrays4020255.
5
Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization.
BMC Med Genomics. 2016 Mar 9;9:12. doi: 10.1186/s12920-016-0173-x.
6
SBR-Blood: systems biology repository for hematopoietic cells.
Nucleic Acids Res. 2016 Jan 4;44(D1):D925-31. doi: 10.1093/nar/gkv1263. Epub 2015 Nov 20.
7
Optimal scaling of digital transcriptomes.
PLoS One. 2013 Nov 6;8(11):e77885. doi: 10.1371/journal.pone.0077885. eCollection 2013.
8
Co-expression network analysis and genetic algorithms for gene prioritization in preeclampsia.
BMC Med Genomics. 2013 Nov 12;6:51. doi: 10.1186/1755-8794-6-51.
10
Gene expression is highly correlated on the chromosome level in urinary bladder cancer.
Cell Cycle. 2013 May 15;12(10):1544-59. doi: 10.4161/cc.24673. Epub 2013 May 8.

本文引用的文献

1
Toward the dynamic interactome: it's about time.
Brief Bioinform. 2010 Jan;11(1):15-29. doi: 10.1093/bib/bbp057. Epub 2010 Jan 8.
2
Co-expression networks: graph properties and topological comparisons.
Bioinformatics. 2010 Jan 15;26(2):205-14. doi: 10.1093/bioinformatics/btp632. Epub 2009 Nov 12.
3
The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms.
Brief Bioinform. 2010 Jan;11(1):80-95. doi: 10.1093/bib/bbp054. Epub 2009 Nov 11.
5
Gene regulatory network inference: data integration in dynamic models-a review.
Biosystems. 2009 Apr;96(1):86-103. doi: 10.1016/j.biosystems.2008.12.004. Epub 2008 Dec 27.
6
Global control of cell-cycle transcription by coupled CDK and network oscillators.
Nature. 2008 Jun 12;453(7197):944-7. doi: 10.1038/nature06955. Epub 2008 May 7.
7
Merging two gene-expression studies via cross-platform normalization.
Bioinformatics. 2008 May 1;24(9):1154-60. doi: 10.1093/bioinformatics/btn083. Epub 2008 Mar 5.
8
Gene annotation and pathway mapping in KEGG.
Methods Mol Biol. 2007;396:71-91. doi: 10.1007/978-1-59745-515-2_6.
9
Inferring gene regulatory networks using differential evolution with local search heuristics.
IEEE/ACM Trans Comput Biol Bioinform. 2007 Oct-Dec;4(4):634-47. doi: 10.1109/TCBB.2007.1058.
10
Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks.
Bioinformatics. 2007 Jul 1;23(13):i282-8. doi: 10.1093/bioinformatics/btm201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验