Suppr超能文献

改进基因调控网络推断与评估:利用网络结构的重要性。

Improving gene regulatory network inference and assessment: The importance of using network structure.

作者信息

Escorcia-Rodríguez Juan M, Gaytan-Nuñez Estefani, Hernandez-Benitez Ericka M, Zorro-Aranda Andrea, Tello-Palencia Marco A, Freyre-González Julio A

机构信息

Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.

Undergraduate Program in Genomic Sciences, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.

出版信息

Front Genet. 2023 Feb 27;14:1143382. doi: 10.3389/fgene.2023.1143382. eCollection 2023.

Abstract

Gene regulatory networks are graph models representing cellular transcription events. Networks are far from complete due to time and resource consumption for experimental validation and curation of the interactions. Previous assessments have shown the modest performance of the available network inference methods based on gene expression data. Here, we study several caveats on the inference of regulatory networks and methods assessment through the quality of the input data and gold standard, and the assessment approach with a focus on the global structure of the network. We used synthetic and biological data for the predictions and experimentally-validated biological networks as the gold standard (ground truth). Standard performance metrics and graph structural properties suggest that methods inferring co-expression networks should no longer be assessed equally with those inferring regulatory interactions. While methods inferring regulatory interactions perform better in global regulatory network inference than co-expression-based methods, the latter is better suited to infer function-specific regulons and co-regulation networks. When merging expression data, the size increase should outweigh the noise inclusion and graph structure should be considered when integrating the inferences. We conclude with guidelines to take advantage of inference methods and their assessment based on the applications and available expression datasets.

摘要

基因调控网络是表示细胞转录事件的图模型。由于实验验证和相互作用编目的时间和资源消耗,网络远未完整。先前的评估表明,基于基因表达数据的现有网络推断方法性能一般。在这里,我们通过输入数据和金标准的质量以及侧重于网络全局结构的评估方法,研究了调控网络推断和方法评估中的几个注意事项。我们使用合成数据和生物数据进行预测,并将经过实验验证的生物网络作为金标准(基本事实)。标准性能指标和图结构属性表明,推断共表达网络的方法不应再与推断调控相互作用的方法同等评估。虽然推断调控相互作用的方法在全局调控网络推断中比基于共表达的方法表现更好,但后者更适合推断功能特异性调控子和共调控网络。合并表达数据时,大小增加应超过噪声包含,并且在整合推断结果时应考虑图结构。我们最后给出了一些指导方针,以便根据应用和可用的表达数据集利用推断方法及其评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/677d/10012345/681be3b8e880/fgene-14-1143382-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验