Suppr超能文献

肌强直性营养不良症和其他神经肌肉疾病中肌特异性增强因子 2 异构体的改变。

Altered MEF2 isoforms in myotonic dystrophy and other neuromuscular disorders.

机构信息

Department of Genetics, M.D. Anderson Cancer Center, Unit 1010, University of Texas, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA.

出版信息

Muscle Nerve. 2010 Dec;42(6):856-63. doi: 10.1002/mus.21789.

Abstract

Because of their central role in muscle development and maintenance, MEF2 family members represent excellent candidate effectors of the muscle pathology in myotonic dystrophy (DM). We investigated the expression and alternative splicing of all four MEF2 genes in muscle from neuromuscular disorder (NMD) patients, including DM1 and DM2. We observed MEF2A and MEF2C overexpression in all NMD muscle, including 12 MEF2-interacting genes. Exon 4 and 5 usage in MEF2A and MEF2C was different between DM and normal muscle, with DM showing the embryonic isoform. Similar splicing differences were observed in other NMD muscle. For MEF2C, missplicing was more pronounced in DM than in other dystrophies. Our data confirm dysregulation of MEF2A and MEF2C expression and splicing in several NMD, including DM. Our findings demonstrate that aberrant splicing in NMD is independent from expression of mutant repeats, and suggests that some aberrant splicing, even in DM, may be compensatory rather than primary.

摘要

由于其在肌肉发育和维持中的核心作用,MEF2 家族成员代表了肌强直性营养不良(DM)肌肉病理学的优秀候选效应因子。我们研究了神经肌肉疾病(NMD)患者肌肉中所有四个 MEF2 基因的表达和选择性剪接,包括 DM1 和 DM2。我们观察到所有 NMD 肌肉中的 MEF2A 和 MEF2C 过表达,包括 12 个 MEF2 相互作用基因。MEF2A 和 MEF2C 的外显子 4 和 5 使用在 DM 和正常肌肉之间不同,DM 表现出胚胎异构体。在其他 NMD 肌肉中也观察到类似的剪接差异。对于 MEF2C,DM 中的错配剪接比其他肌营养不良症更为明显。我们的数据证实了几种 NMD 中 MEF2A 和 MEF2C 的表达和剪接失调,包括 DM。我们的发现表明,NMD 中的异常剪接与突变重复的表达无关,并表明一些异常剪接,即使在 DM 中,也可能是代偿性的而不是主要的。

相似文献

1
Altered MEF2 isoforms in myotonic dystrophy and other neuromuscular disorders.
Muscle Nerve. 2010 Dec;42(6):856-63. doi: 10.1002/mus.21789.
2
Most expression and splicing changes in myotonic dystrophy type 1 and type 2 skeletal muscle are shared with other muscular dystrophies.
Neuromuscul Disord. 2014 Mar;24(3):227-40. doi: 10.1016/j.nmd.2013.11.001. Epub 2013 Nov 15.
3
Phosphorylation and alternative pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity.
Mol Cell Biol. 2004 Sep;24(18):8264-75. doi: 10.1128/MCB.24.18.8264-8275.2004.
5
Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma.
J Cancer Res Clin Oncol. 2008 Jan;134(1):83-91. doi: 10.1007/s00432-007-0252-7. Epub 2007 Jul 5.
7
Vascular endothelial growth factor induces MEF2C and MEF2-dependent activity in endothelial cells.
Invest Ophthalmol Vis Sci. 2008 Aug;49(8):3640-8. doi: 10.1167/iovs.08-1760. Epub 2008 Apr 30.
8
Alternative splicing dysregulation secondary to skeletal muscle regeneration.
Ann Neurol. 2011 Apr;69(4):681-90. doi: 10.1002/ana.22278. Epub 2011 Mar 11.
9
Expression of myocyte enhancer factor-2 and downstream genes in ground squirrel skeletal muscle during hibernation.
Mol Cell Biochem. 2010 Nov;344(1-2):151-62. doi: 10.1007/s11010-010-0538-y. Epub 2010 Jul 9.
10
Missplicing in Skeletal Muscle as a Cardiac Biomarker in Myotonic Dystrophy Type 1 but Not in Myotonic Dystrophy Type 2.
Front Neurol. 2019 Sep 27;10:992. doi: 10.3389/fneur.2019.00992. eCollection 2019.

引用本文的文献

2
A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle.
iScience. 2023 Mar 31;26(4):106541. doi: 10.1016/j.isci.2023.106541. eCollection 2023 Apr 21.
4
Role of CD14 in human disease.
Immunology. 2023 Jul;169(3):260-270. doi: 10.1111/imm.13634. Epub 2023 Mar 27.
5
Stretching muscle cells induces transcriptional and splicing transitions and changes in SR proteins.
Commun Biol. 2022 Sep 19;5(1):987. doi: 10.1038/s42003-022-03915-7.
7
Skeletal muscle-specific overexpression of miR-486 limits mammary tumor-induced skeletal muscle functional limitations.
Mol Ther Nucleic Acids. 2022 Mar 16;28:231-248. doi: 10.1016/j.omtn.2022.03.009. eCollection 2022 Jun 14.
8
GCN5 maintains muscle integrity by acetylating YY1 to promote dystrophin expression.
J Cell Biol. 2022 Feb 7;221(2). doi: 10.1083/jcb.202104022. Epub 2022 Jan 13.
9
A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Flight Muscle.
Cells. 2021 Sep 22;10(10):2505. doi: 10.3390/cells10102505.
10
hnRNP L is essential for myogenic differentiation and modulates myotonic dystrophy pathologies.
Muscle Nerve. 2021 Jun;63(6):928-940. doi: 10.1002/mus.27216. Epub 2021 Mar 22.

本文引用的文献

1
Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy.
Nat Struct Mol Biol. 2010 Feb;17(2):187-93. doi: 10.1038/nsmb.1720. Epub 2010 Jan 24.
2
Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2.
Acta Neuropathol. 2010 Apr;119(4):465-79. doi: 10.1007/s00401-010-0637-6. Epub 2010 Jan 12.
3
Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy.
Hum Mol Genet. 2009 Apr 15;18(8):1471-81. doi: 10.1093/hmg/ddp058. Epub 2009 Feb 17.
4
Disease-associated novel CD46 splicing variants and pathologic bone remodeling in otosclerosis.
Laryngoscope. 2008 Sep;118(9):1669-76. doi: 10.1097/MLG.0b013e31817c133d.
5
Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1.
N Engl J Med. 2008 Jun 19;358(25):2688-97. doi: 10.1056/NEJMoa062800.
6
Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays.
BMC Genomics. 2008 May 12;9:216. doi: 10.1186/1471-2164-9-216.
8
MEF2: a central regulator of diverse developmental programs.
Development. 2007 Dec;134(23):4131-40. doi: 10.1242/dev.008367. Epub 2007 Oct 24.
9
Myotonic dystrophy: RNA-mediated muscle disease.
Curr Opin Neurol. 2007 Oct;20(5):572-6. doi: 10.1097/WCO.0b013e3282ef6064.
10
Xin, an actin binding protein, is expressed within muscle satellite cells and newly regenerated skeletal muscle fibers.
Am J Physiol Cell Physiol. 2007 Nov;293(5):C1636-44. doi: 10.1152/ajpcell.00124.2007. Epub 2007 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验