Gaskins C J, Hanas J S
Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City 73190.
Nucleic Acids Res. 1990 Apr 25;18(8):2117-23. doi: 10.1093/nar/18.8.2117.
Previous studies characterized macromolecular differences between Xenopus and Rana transcription factor IIIA (TFIIIA) (Gaskins et al., 1989, Nucl. Acids Res. 17, 781-794). In the present study, cDNAs for TFIIIA from Xenopus borealis and Rana catesbeiana (American bullfrog) were cloned and sequenced in order to gain molecular insight into the structure, function, and species variation of TFIIIA and the TFIIIA-type zinc finger. X. borealis and R. catesbeiana TFIIIAs have 339 and 335 amino acids respectively, 5 and 9 fewer than X. laevis TFIIIA. X. borealis TFIIIA exhibited 84% sequence homology (55 amino acid differences) with X. laevis TFIIIA and R. catesbeiana TFIIIA exhibited 63% homology (128 amino acid changes) with X. laevis TFIIIA. This sequence variation is not random; the C-terminal halves of these TFIIIAs contain substantially more non-conservative changes than the N-terminal halves. In particular, the N-terminal region of TFIIIA (that region forming strong DNA contacts) is the most conserved and the C-terminal tail (that region involved in transcription promotion) the most divergent. Hydropathy analyses of these sequences revealed zinc finger periodicity in the N-terminal halves, extreme hydrophilicity in the C-terminal halves, and a different C-terminal tail hydropathy for R. catesbeiana TFIIIA. Although considerable sequence variation exists in these TFIIIA zinc fingers, the Cys/His, Tyr/Phe and Leu residues are strictly conserved between X. laevis and X. borealis. Strict conservation of only the Cys/His motif is observed between X. laevis and R. catesbeiana TFIIIA. Overall, Cys/His zinc fingers in TFIIIA are much less conserved than Cys/Cys fingers in erythroid transcription factor (Eryf 1) and also less conserved than homeo box domains in segmentation genes. The collective evidence indicates that TFIIIA evolved from a common precursor containing up to 12 finger domains which subsequently evolved at different rates.
以往的研究对非洲爪蟾和牛蛙的转录因子IIIA(TFIIIA)之间的大分子差异进行了表征(加斯金斯等人,1989年,《核酸研究》17卷,781 - 794页)。在本研究中,克隆并测序了北方爪蟾和牛蛙的TFIIIA的cDNA,以便从分子层面深入了解TFIIIA以及TFIIIA型锌指的结构、功能和物种差异。北方爪蟾和牛蛙的TFIIIA分别有339和335个氨基酸,比非洲爪蟾的TFIIIA少5个和9个。北方爪蟾的TFIIIA与非洲爪蟾的TFIIIA表现出84%的序列同源性(有55个氨基酸差异),牛蛙的TFIIIA与非洲爪蟾的TFIIIA表现出63%的同源性(有128个氨基酸变化)。这种序列变异并非随机;这些TFIIIA的C端C端包含的非保守变化比N端多得多。特别是,TFIIIA的N端区域(形成与DNA强相互作用的区域)是最保守的,而C端尾巴(参与转录促进的区域)是最具差异的。对这些序列的亲水性分析显示,N端存在锌指周期性,C端极度亲水,并且牛蛙的TFIIIA的C端尾巴亲水性不同。尽管这些TFIIIA锌指中存在相当大的序列差异,但在非洲爪蟾和北方爪蟾之间,半胱氨酸/组氨酸、酪氨酸/苯丙氨酸和亮氨酸残基是严格保守的。在非洲爪蟾和牛蛙的TFIIIA之间,仅观察到半胱氨酸/组氨酸基序的严格保守。总体而言,TFIIIA中的半胱氨酸/组氨酸锌指比红细胞转录因子(Eryf 1)中的半胱氨酸/半胱氨酸锌指保守性低得多,也比分节基因中的同源框结构域保守性低。综合证据表明,TFIIIA起源于一个含有多达12个指状结构域的共同前体,这些结构域随后以不同的速率进化。