Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, OH 43210, USA.
J Neurosci. 2010 Nov 24;30(47):15987-6001. doi: 10.1523/JNEUROSCI.3565-10.2010.
Precise targeting of various voltage-gated ion channels to proper membrane domains is crucial for their distinct roles in neuronal excitability and synaptic transmission. How each channel protein is transported within the cytoplasm is poorly understood. Here, we report that KIF5/kinesin I transports Kv3.1 voltage-gated K(+) (Kv) channels through the axon initial segment (AIS) via direct binding. First, we have identified a novel interaction between Kv3.1 and KIF5, confirmed by immunoprecipitation from mouse brain lysates and by pull-down assays with exogenously expressed proteins. The interaction is mediated by a direct binding between the Kv3.1 N-terminal T1 domain and a conserved region in KIF5 tail domains, in which proper T1 tetramerization is crucial. Overexpression of this region of KIF5B markedly reduces axonal levels of Kv3.1bHA. In mature hippocampal neurons, endogenous Kv3.1b and KIF5 colocalize. Suppressing the endogenous KIF5B level by RNA interference significantly reduces the Kv3.1b axonal level. Furthermore, mutating the Zn(2+)-binding site within T1 markedly decreases channel axonal targeting and forward trafficking, likely through disrupting T1 tetramerization and hence eliminating the binding to KIF5 tail. The mutation also alters channel activity. Interestingly, coexpression of the YFP (yellow fluorescent protein)-tagged KIF5B assists dendritic Kv3.1a and even mutants with a faulty axonal targeting motif to penetrate the AIS. Finally, fluorescently tagged Kv3.1 channels colocalize and comove with KIF5B along axons revealed by two-color time-lapse imaging. Our findings suggest that the binding to KIF5 ensures properly assembled and functioning Kv3.1 channels to be transported into axons.
精确靶向各种电压门控离子通道到适当的膜域对于它们在神经元兴奋性和突触传递中的独特作用至关重要。然而,目前对于每个通道蛋白如何在细胞质内运输的机制仍知之甚少。在这里,我们报告 KIF5/驱动蛋白 I 通过直接结合将 Kv3.1 电压门控 K(+)(Kv)通道运送到轴突起始段(AIS)。首先,我们已经鉴定出 Kv3.1 和 KIF5 之间的一种新相互作用,该相互作用可通过从小鼠脑裂解物中进行免疫沉淀以及通过与外源性表达的蛋白进行下拉测定来证实。该相互作用是由 Kv3.1 N 端 T1 结构域和 KIF5 尾部结构域中的保守区域之间的直接结合介导的,其中 T1 四聚体化的正确与否至关重要。KIF5B 的这一区域的过表达会显著降低轴突中的 Kv3.1bHA 水平。在成熟的海马神经元中,内源性 Kv3.1b 和 KIF5 共定位。通过 RNA 干扰抑制内源性 KIF5B 水平会显著降低 Kv3.1b 的轴突水平。此外,突变 T1 内的 Zn(2+)-结合位点会显著降低通道的轴突靶向和正向转运,这可能是通过破坏 T1 四聚化并因此消除与 KIF5 尾部的结合而实现的。该突变还改变了通道的活性。有趣的是,共表达 YFP(黄色荧光蛋白)标记的 KIF5B 会协助树突 Kv3.1a 甚至带有错误的轴突靶向基序的突变体穿透 AIS。最后,通过双色延时成像揭示,荧光标记的 Kv3.1 通道与 KIF5B 共定位并共同运动。我们的研究结果表明,与 KIF5 的结合确保了正确组装和功能正常的 Kv3.1 通道被运送到轴突中。