Department of Applied Science, McGlothlin-Street Hall, The College of William & Mary, Williamsburg, Virginia, USA.
Prog Brain Res. 2010;187:111-36. doi: 10.1016/B978-0-444-53613-6.00008-3.
Breathing, chewing, and walking are critical life-sustaining behaviors in mammals that consist essentially of simple rhythmic movements. Breathing movements in particular involve the diaphragm, thorax, and airways but emanate from a network in the lower brain stem. This network can be studied in reduced preparations in vitro and using simplified mathematical models that make testable predictions. An iterative approach that employs both in vitro and in silico models argues against canonical mechanisms for respiratory rhythm in neonatal rodents that involve reciprocal inhibition and pacemaker properties. We present an alternative model in which emergent network properties play a rhythmogenic role. Specifically, we show evidence that synaptically activated burst-generating conductances-which are only available in the context of network activity-engender robust periodic bursts in respiratory neurons. Because the cellular burst-generating mechanism is linked to network synaptic drive we dub this type of system a group pacemaker.
呼吸、咀嚼和行走是哺乳动物维持生命的关键行为,这些行为主要由简单的节律运动组成。特别是呼吸运动涉及膈肌、胸腔和气道,但源于脑干下部的网络。该网络可以在体外的简化准备中进行研究,并使用简化的数学模型进行可测试的预测。一种迭代方法,同时使用体外和计算机模型,反对涉及相互抑制和起搏器特性的新生啮齿动物呼吸节律的经典机制。我们提出了一个替代模型,其中新兴的网络特性起着节奏生成的作用。具体来说,我们证明了突触激活的爆发产生电导-只有在网络活动的情况下才可用-在呼吸神经元中产生强大的周期性爆发。由于细胞爆发产生机制与网络突触驱动相关,因此我们将这种系统称为群体起搏器。