Suppr超能文献

简单的细胞和网络控制原理控制着复杂的运动行为模式。

Simple cellular and network control principles govern complex patterns of motor behavior.

机构信息

School of Computer Science and Communication, Royal Institute of Technology, AlbaNova University Center, S-106 91 Stockholm, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20027-32. doi: 10.1073/pnas.0906722106. Epub 2009 Nov 9.

Abstract

The vertebrate central nervous system is organized in modules that independently execute sophisticated tasks. Such modules are flexibly controlled and operate with a considerable degree of autonomy. One example is locomotion generated by spinal central pattern generator networks (CPGs) that shape the detailed motor output. The level of activity is controlled from brainstem locomotor command centers, which in turn, are under the control of the basal ganglia. By using a biophysically detailed, full-scale computational model of the lamprey CPG (10,000 neurons) and its brainstem/forebrain control, we demonstrate general control principles that can adapt the network to different demands. Forward or backward locomotion and steering can be flexibly controlled by local synaptic effects limited to only the very rostral part of the network. Variability in response properties within each neuronal population is an essential feature and assures a constant phase delay along the cord for different locomotor speeds.

摘要

脊椎动物的中枢神经系统是由独立执行复杂任务的模块组织而成的。这些模块可以灵活控制,并具有相当程度的自主性。一个例子是由脊髓中枢模式发生器网络 (CPG) 产生的运动,这些网络塑造了详细的运动输出。活动水平由脑干运动命令中心控制,而这些命令中心又受基底神经节的控制。通过使用生物物理上详细的、全规模的七鳃鳗 CPG(10000 个神经元)及其脑干/前脑控制的计算模型,我们证明了可以使网络适应不同需求的一般控制原则。前进、后退和转向运动可以通过仅局限于网络最前端的局部突触效应灵活控制。每个神经元群体内的反应特性的可变性是一个基本特征,可确保在不同的运动速度下沿脊髓保持恒定的相位延迟。

相似文献

1
Simple cellular and network control principles govern complex patterns of motor behavior.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20027-32. doi: 10.1073/pnas.0906722106. Epub 2009 Nov 9.
2
Gating of steering signals through phasic modulation of reticulospinal neurons during locomotion.
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3591-6. doi: 10.1073/pnas.1401459111. Epub 2014 Feb 18.
3
Modifications of locomotor pattern underlying escape behavior in the lamprey.
J Neurophysiol. 2008 Jan;99(1):297-307. doi: 10.1152/jn.00903.2007. Epub 2007 Nov 14.
4
Neural bases of goal-directed locomotion in vertebrates--an overview.
Brain Res Rev. 2008 Jan;57(1):2-12. doi: 10.1016/j.brainresrev.2007.06.027. Epub 2007 Aug 16.
5
Mathematical analysis and simulations of the neural circuit for locomotion in lampreys.
Phys Rev Lett. 2004 May 14;92(19):198106. doi: 10.1103/PhysRevLett.92.198106.
6
Rhythmogenesis in axial locomotor networks: an interspecies comparison.
Prog Brain Res. 2010;187:189-211. doi: 10.1016/B978-0-444-53613-6.00013-7.
7
Intrinsic function of a neuronal network - a vertebrate central pattern generator.
Brain Res Brain Res Rev. 1998 May;26(2-3):184-97. doi: 10.1016/s0165-0173(98)00002-2.
8
Simple models for excitable and oscillatory neural networks.
J Math Biol. 1998 Nov;37(5):419-46. doi: 10.1007/s002850050136.
10
Modeling and analysis of a new locomotion control neural networks.
Biol Cybern. 2018 Aug;112(4):345-356. doi: 10.1007/s00422-018-0758-x. Epub 2018 Apr 26.

引用本文的文献

3
Spinal Interneurons: Diversity and Connectivity in Motor Control.
Annu Rev Neurosci. 2023 Jul 10;46:79-99. doi: 10.1146/annurev-neuro-083122-025325. Epub 2023 Feb 28.
4
How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry?
Front Syst Neurosci. 2022 Mar 3;16:828532. doi: 10.3389/fnsys.2022.828532. eCollection 2022.
6
Dopaminergic and Cholinergic Modulation of Large Scale Networks Using .
Front Neural Circuits. 2021 Oct 21;15:748989. doi: 10.3389/fncir.2021.748989. eCollection 2021.
7
Modeling spinal locomotor circuits for movements in developing zebrafish.
Elife. 2021 Sep 2;10:e67453. doi: 10.7554/eLife.67453.
8
Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics.
Int J Mol Sci. 2021 Jun 25;22(13):6835. doi: 10.3390/ijms22136835.
9
The CPGs for Limbed Locomotion-Facts and Fiction.
Int J Mol Sci. 2021 May 30;22(11):5882. doi: 10.3390/ijms22115882.

本文引用的文献

1
Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis.
J Comput Neurosci. 2009 Aug;27(1):3-36. doi: 10.1007/s10827-008-0124-4. Epub 2009 Jan 6.
2
Large-scale modeling - a tool for conquering the complexity of the brain.
Front Neuroinform. 2008 Apr 2;2:1. doi: 10.3389/neuro.11.001.2008. eCollection 2008.
3
Diencephalic locomotor region in the lamprey--afferents and efferent control.
J Neurophysiol. 2008 Sep;100(3):1343-53. doi: 10.1152/jn.01128.2007. Epub 2008 Jul 2.
4
Pacemaker and network mechanisms of rhythm generation: cooperation and competition.
J Theor Biol. 2008 Aug 7;253(3):452-61. doi: 10.1016/j.jtbi.2008.04.016. Epub 2008 Apr 26.
5
Forebrain dopamine depletion impairs motor behavior in lamprey.
Eur J Neurosci. 2008 Mar;27(6):1452-60. doi: 10.1111/j.1460-9568.2008.06125.x. Epub 2008 Mar 10.
6
Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion.
J Neurophysiol. 2008 May;99(5):2408-19. doi: 10.1152/jn.01085.2007. Epub 2008 Feb 6.
7
Organization of mammalian locomotor rhythm and pattern generation.
Brain Res Rev. 2008 Jan;57(1):134-46. doi: 10.1016/j.brainresrev.2007.08.006. Epub 2007 Sep 5.
8
Modeling a vertebrate motor system: pattern generation, steering and control of body orientation.
Prog Brain Res. 2007;165:221-34. doi: 10.1016/S0079-6123(06)65014-0.
9
Initiation of locomotion in lampreys.
Brain Res Rev. 2008 Jan;57(1):172-82. doi: 10.1016/j.brainresrev.2007.07.016. Epub 2007 Aug 22.
10
Origin of excitatory drive to a spinal locomotor network.
Brain Res Rev. 2008 Jan;57(1):22-8. doi: 10.1016/j.brainresrev.2007.06.015. Epub 2007 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验