School of Computer Science and Communication, Royal Institute of Technology, AlbaNova University Center, S-106 91 Stockholm, Sweden.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20027-32. doi: 10.1073/pnas.0906722106. Epub 2009 Nov 9.
The vertebrate central nervous system is organized in modules that independently execute sophisticated tasks. Such modules are flexibly controlled and operate with a considerable degree of autonomy. One example is locomotion generated by spinal central pattern generator networks (CPGs) that shape the detailed motor output. The level of activity is controlled from brainstem locomotor command centers, which in turn, are under the control of the basal ganglia. By using a biophysically detailed, full-scale computational model of the lamprey CPG (10,000 neurons) and its brainstem/forebrain control, we demonstrate general control principles that can adapt the network to different demands. Forward or backward locomotion and steering can be flexibly controlled by local synaptic effects limited to only the very rostral part of the network. Variability in response properties within each neuronal population is an essential feature and assures a constant phase delay along the cord for different locomotor speeds.
脊椎动物的中枢神经系统是由独立执行复杂任务的模块组织而成的。这些模块可以灵活控制,并具有相当程度的自主性。一个例子是由脊髓中枢模式发生器网络 (CPG) 产生的运动,这些网络塑造了详细的运动输出。活动水平由脑干运动命令中心控制,而这些命令中心又受基底神经节的控制。通过使用生物物理上详细的、全规模的七鳃鳗 CPG(10000 个神经元)及其脑干/前脑控制的计算模型,我们证明了可以使网络适应不同需求的一般控制原则。前进、后退和转向运动可以通过仅局限于网络最前端的局部突触效应灵活控制。每个神经元群体内的反应特性的可变性是一个基本特征,可确保在不同的运动速度下沿脊髓保持恒定的相位延迟。