Suppr超能文献

中枢模式发生器网络中节律产生的一般原则。

General principles of rhythmogenesis in central pattern generator networks.

机构信息

Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, New York, USA.

出版信息

Prog Brain Res. 2010;187:213-22. doi: 10.1016/B978-0-444-53613-6.00014-9.

Abstract

The cellular and ionic mechanisms that generate the rhythm in central pattern generator (CPG) networks for simple movements are not well understood. Using vertebrate locomotion, respiration and mastication as exemplars, I describe four main principles of rhythmogenesis: (1) rhythmogenic ionic currents underlie all CPG networks, regardless of whether they are driven by a network pacemaker or an endogenous pacemaker neuron kernel; (2) fast synaptic transmission often evokes slow currents that can affect cycle frequency; (3) there are likely to be multiple and redundant mechanisms for rhythmogenesis in any essential CPG network; and (4) glial cells may participate in CPG network function. The neural basis for rhythmogenesis in simple behaviors has been studied for almost 100 years, yet we cannot identify with certainty the detailed mechanisms by which rhythmic behaviors are generated in any vertebrate system. Early studies focused on whether locomotor rhythms were generated by a chain of coupled reflexes that require sensory feedback, or by a central neural network. By now there is general agreement that for the major rhythmic behaviors (including locomotion, respiration, and mastication, the subjects of this book), there exist CPG networks within the central nervous system that are able to drive the basic rhythmic behavior in the complete absence of sensory feedback. This of course does not eliminate an important role for sensory feedback, which certainly affects cycle frequency and for some behaviors determines the timing of one phase of the behavior (Borgmann et al., 2009; Pearson, 2008). Given the existence of CPGs, the question of rhythmogenesis can be rephrased to ask how these networks determine the timing of the rhythmic behavior. In this chapter, I focus on cellular and molecular mechanisms that could underlie rhythmogenesis in CPG networks, especially those that drive locomotion, respiration, and mastication.

摘要

中枢模式发生器(CPG)网络产生简单运动节律的细胞和离子机制尚不清楚。以脊椎动物的运动、呼吸和咀嚼为例,我描述了节律产生的四个主要原则:(1)CPG 网络的节律产生离子电流,无论它们是由网络起搏器还是内源性起搏器神经元核心驱动;(2)快速突触传递常常引发可以影响周期频率的缓慢电流;(3)任何基本的 CPG 网络中可能存在多种冗余的节律产生机制;(4)神经胶质细胞可能参与 CPG 网络的功能。简单行为的节律产生的神经基础已经研究了近 100 年,但我们不能确定在任何脊椎动物系统中产生节律行为的确切详细机制。早期的研究集中在运动节律是否是由一系列需要感觉反馈的耦合反射链产生的,还是由中枢神经网络产生的。现在人们普遍认为,对于主要的节律行为(包括运动、呼吸和咀嚼,本书的主题),中枢神经系统中存在 CPG 网络,这些网络能够在完全没有感觉反馈的情况下驱动基本的节律行为。这当然并不排除感觉反馈的重要作用,它肯定会影响周期频率,并且对于某些行为来说,它决定了行为的一个阶段的时间(Borgmann 等人,2009 年;Pearson,2008 年)。考虑到 CPG 的存在,节律产生的问题可以重新表述为询问这些网络如何确定节律行为的时间。在这一章中,我专注于可能为 CPG 网络中的节律产生提供基础的细胞和分子机制,特别是那些驱动运动、呼吸和咀嚼的机制。

相似文献

1
General principles of rhythmogenesis in central pattern generator networks.
Prog Brain Res. 2010;187:213-22. doi: 10.1016/B978-0-444-53613-6.00014-9.
2
Neuromodulation of central pattern generators in invertebrates and vertebrates.
Curr Opin Neurobiol. 2006 Dec;16(6):604-14. doi: 10.1016/j.conb.2006.10.007. Epub 2006 Nov 7.
3
Rhythmogenesis in axial locomotor networks: an interspecies comparison.
Prog Brain Res. 2010;187:189-211. doi: 10.1016/B978-0-444-53613-6.00013-7.
4
Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network.
Eur J Neurosci. 2007 May;25(9):2805-18. doi: 10.1111/j.1460-9568.2007.05517.x.
5
Altered gravity highlights central pattern generator mechanisms.
J Neurophysiol. 2008 Nov;100(5):2819-24. doi: 10.1152/jn.90436.2008. Epub 2008 Jul 23.
6
Mathematical study on ionic mechanism of lamprey central pattern generator model.
Int J Neural Syst. 2009 Dec;19(6):409-24. doi: 10.1142/S0129065709002117.
7
Genetic dissection of rhythmic motor networks in mice.
Prog Brain Res. 2010;187:19-37. doi: 10.1016/B978-0-444-53613-6.00002-2.
8
Neural basis of rhythmic behavior in animals.
Science. 1980 Oct 31;210(4469):492-8. doi: 10.1126/science.7423199.
9
Background sodium current underlying respiratory rhythm regularity.
Eur J Neurosci. 2008 Dec;28(12):2423-33. doi: 10.1111/j.1460-9568.2008.06537.x. Epub 2008 Nov 21.

引用本文的文献

1
Now and then: Development of spinal Shox2 neurons.
J Physiol. 2025 Aug;603(16):4443-4444. doi: 10.1113/JP289015. Epub 2025 Jul 26.
4
Contribution of membrane-associated oscillators to biological timing at different timescales.
Front Physiol. 2024 Jan 9;14:1243455. doi: 10.3389/fphys.2023.1243455. eCollection 2023.
5
Linking neural circuits to the mechanics of animal behavior in larval locomotion.
Front Neural Circuits. 2023 Aug 17;17:1175899. doi: 10.3389/fncir.2023.1175899. eCollection 2023.
6
Multiple intrinsic membrane properties are modulated in a switch from single- to dual-network activity.
J Neurophysiol. 2022 Nov 1;128(5):1181-1198. doi: 10.1152/jn.00337.2022. Epub 2022 Oct 5.
8
Identification of adult spinal Shox2 neuronal subpopulations based on unbiased computational clustering of electrophysiological properties.
Front Neural Circuits. 2022 Aug 4;16:957084. doi: 10.3389/fncir.2022.957084. eCollection 2022.
9
Role of DSCAM in the Development of Neural Control of Movement and Locomotion.
Int J Mol Sci. 2021 Aug 7;22(16):8511. doi: 10.3390/ijms22168511.
10
Recent Insights into the Rhythmogenic Core of the Locomotor CPG.
Int J Mol Sci. 2021 Jan 30;22(3):1394. doi: 10.3390/ijms22031394.

本文引用的文献

2
Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2939-44. doi: 10.1073/pnas.0808776106. Epub 2009 Feb 5.
3
Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20941-6. doi: 10.1073/pnas.0806403106. Epub 2008 Dec 18.
6
What role do pacemakers play in the generation of respiratory rhythm?
Adv Exp Med Biol. 2008;605:88-93. doi: 10.1007/978-0-387-73693-8_15.
7
Long-term plasticity of the spinal locomotor circuitry mediated by endocannabinoid and nitric oxide signaling.
J Neurosci. 2007 Nov 14;27(46):12664-74. doi: 10.1523/JNEUROSCI.3174-07.2007.
8
Sodium-dependent potassium channels of a Slack-like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons.
J Physiol. 2007 Nov 15;585(Pt 1):75-90. doi: 10.1113/jphysiol.2007.138156. Epub 2007 Sep 20.
9
Role of sensory feedback in the control of stance duration in walking cats.
Brain Res Rev. 2008 Jan;57(1):222-7. doi: 10.1016/j.brainresrev.2007.06.014. Epub 2007 Jul 29.
10
Endocannabinoid signaling in the spinal locomotor circuitry.
Brain Res Rev. 2008 Jan;57(1):29-36. doi: 10.1016/j.brainresrev.2007.06.020. Epub 2007 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验