Department of Internal Medicine III - Cardiology, University of Heidelberg, INF 410, D-69120 Heidelberg, Germany.
Cell Signal. 2011 Mar;23(3):579-85. doi: 10.1016/j.cellsig.2010.11.010. Epub 2010 Nov 25.
β-adrenoceptors (βAR) play a central role in the regulation of cAMP synthesis and cardiac contractility. Nucleoside diphosphate kinase B (NDPK B) regulates cAMP signalling by complex formation with Gβγ dimers thereby activating and stabilizing heterotrimeric G(s) proteins, key transducer of βAR signals into the cell. Here, we explored the requirement of NDPK B for basal and βAR-stimulated cAMP synthesis and analysed the underlying mechanisms by comparing wild-type NDPK B (WT) and its catalytically inactive H118N mutant. Stable overexpression of both WT- and H118N-NDPK B in cardiomyocyte derived H10 cells increased the plasma membrane content of G(s) and caveolin-1 and thus enhanced the isoproterenol (ISO)-stimulated cAMP-synthesis by about 2-fold. Conversely, the loss of NDPK B in embryonic fibroblasts from NDPK A/B-depleted mice was associated with a severe reduction in membranous G(s) protein and carveolin-1 content causing a marked decrease in basal and ISO-induced cAMP formation. Re-expression of NDPK B, but not of NDPK A, was able to rescue this phenotype. Both, re-expression of WT- and H118N-NDPK B induced the re-appearance of G(s) and caveolin-1 at the plasma membrane to a similar extent. Accordingly, WT- and H118N-NDPK B similarly enhanced ISO-induced cAMP formation. In contrast, the catalytically inactive H118N-NDPK B was less potent and less effective in rescuing basal cAMP production. Identical results were obtained in neonatal rat cardiac myocytes after siRNA-induced knockdown and adenoviral re-expression of NDPK B. Our data reveal that NDPK B regulates G(s) function by two different mechanisms. The complex formation of NDPK B with G(s) is required for the stabilization of the G protein content at the plasma membrane. In addition, the NDPK B-dependent phosphotransfer reaction, which requires the catalytic activity, specifically allows a receptor-independent, basal G(s) activation.
β-肾上腺素受体(βAR)在 cAMP 合成和心肌收缩力的调节中发挥核心作用。核苷二磷酸激酶 B(NDPK B)通过与 Gβγ 二聚体形成复合物来调节 cAMP 信号转导,从而激活并稳定异三聚体 G(s)蛋白,这是βAR 信号进入细胞的关键转导器。在这里,我们通过比较野生型 NDPK B(WT)及其催化失活的 H118N 突变体,探讨了 NDPK B 对基础和βAR 刺激的 cAMP 合成的要求,并分析了潜在的机制。在心肌细胞衍生的 H10 细胞中稳定过表达 WT 和 H118N-NDPK B 均可使 G(s)和 caveolin-1 的质膜含量增加,从而使异丙肾上腺素(ISO)刺激的 cAMP 合成增加约 2 倍。相反,从 NDPK A/B 耗尽的小鼠胚胎成纤维细胞中缺失 NDPK B 与质膜中 G(s)蛋白和 caveolin-1 含量的严重减少有关,导致基础和 ISO 诱导的 cAMP 形成明显减少。NDPK B 的重新表达,但不是 NDPK A 的重新表达,能够挽救这种表型。WT 和 H118N-NDPK B 的重新表达都能使 G(s)和 caveolin-1 重新出现在质膜上,其程度相似。相应地,WT 和 H118N-NDPK B 同样增强了 ISO 诱导的 cAMP 形成。相比之下,催化失活的 H118N-NDPK B 作用较弱,在挽救基础 cAMP 产生方面效果较差。在 NDPK B 通过 siRNA 诱导敲低和腺病毒重新表达后,在新生大鼠心肌细胞中也获得了相同的结果。我们的数据表明,NDPK B 通过两种不同的机制调节 G(s)的功能。NDPK B 与 G(s)的复合物形成对于 G 蛋白在质膜上的稳定性是必需的。此外,需要催化活性的 NDPK B 依赖性磷酸转移反应可特异性允许受体非依赖性的基础 G(s)激活。