Suppr超能文献

二元数据的稀疏逻辑主成分分析

SPARSE LOGISTIC PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA.

作者信息

Lee Seokho, Huang Jianhua Z, Hu Jianhua

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA,

出版信息

Ann Appl Stat. 2010 Sep 1;4(3):1579-1601. doi: 10.1214/10-AOAS327SUPP.

Abstract

We develop a new principal components analysis (PCA) type dimension reduction method for binary data. Different from the standard PCA which is defined on the observed data, the proposed PCA is defined on the logit transform of the success probabilities of the binary observations. Sparsity is introduced to the principal component (PC) loading vectors for enhanced interpretability and more stable extraction of the principal components. Our sparse PCA is formulated as solving an optimization problem with a criterion function motivated from penalized Bernoulli likelihood. A Majorization-Minimization algorithm is developed to efficiently solve the optimization problem. The effectiveness of the proposed sparse logistic PCA method is illustrated by application to a single nucleotide polymorphism data set and a simulation study.

摘要

我们为二元数据开发了一种新的主成分分析(PCA)类型的降维方法。与基于观测数据定义的标准PCA不同,所提出的PCA是基于二元观测成功概率的对数变换来定义的。在主成分(PC)载荷向量中引入稀疏性,以增强可解释性并更稳定地提取主成分。我们的稀疏PCA被表述为求解一个具有基于惩罚伯努利似然的准则函数的优化问题。开发了一种主元化-最小化算法来有效求解该优化问题。通过应用于一个单核苷酸多态性数据集和一项模拟研究,说明了所提出的稀疏逻辑PCA方法的有效性。

相似文献

1
SPARSE LOGISTIC PRINCIPAL COMPONENTS ANALYSIS FOR BINARY DATA.二元数据的稀疏逻辑主成分分析
Ann Appl Stat. 2010 Sep 1;4(3):1579-1601. doi: 10.1214/10-AOAS327SUPP.
2
Stochastic convex sparse principal component analysis.随机凸稀疏主成分分析
EURASIP J Bioinform Syst Biol. 2016 Sep 9;2016(1):15. doi: 10.1186/s13637-016-0045-x. eCollection 2016 Dec.
3
Sparse Principal Component Analysis With Preserved Sparsity Pattern.具有保留稀疏模式的稀疏主成分分析
IEEE Trans Image Process. 2019 Jul;28(7):3274-3285. doi: 10.1109/TIP.2019.2895464. Epub 2019 Jan 25.
4
Sparse Exponential Family Principal Component Analysis.稀疏指数族主成分分析
Pattern Recognit. 2016 Dec;60:681-691. doi: 10.1016/j.patcog.2016.05.024. Epub 2016 May 21.
5
Structured Sparse Principal Components Analysis With the TV-Elastic Net Penalty.基于 TV-弹性网络罚项的结构稀疏主成分分析。
IEEE Trans Med Imaging. 2018 Feb;37(2):396-407. doi: 10.1109/TMI.2017.2749140. Epub 2017 Sep 4.
8
A Guide for Sparse PCA: Model Comparison and Applications.稀疏 PCA 指南:模型比较与应用。
Psychometrika. 2021 Dec;86(4):893-919. doi: 10.1007/s11336-021-09773-2. Epub 2021 Jun 29.
9
Sparse Principal Component Analysis via Rotation and Truncation.基于旋转和截断的稀疏主成分分析。
IEEE Trans Neural Netw Learn Syst. 2016 Apr;27(4):875-90. doi: 10.1109/TNNLS.2015.2427451. Epub 2015 Dec 22.

引用本文的文献

1
Bayesian inference on high-dimensional multivariate binary responses.高维多元二元响应的贝叶斯推断。
J Am Stat Assoc. 2024;119(548):2560-2571. doi: 10.1080/01621459.2023.2260053. Epub 2023 Nov 9.
9
Sparse Exponential Family Principal Component Analysis.稀疏指数族主成分分析
Pattern Recognit. 2016 Dec;60:681-691. doi: 10.1016/j.patcog.2016.05.024. Epub 2016 May 21.

本文引用的文献

1
Variable Selection using MM Algorithms.使用MM算法进行变量选择
Ann Stat. 2005;33(4):1617-1642. doi: 10.1214/009053605000000200.
3
A haplotype map of the human genome.人类基因组单倍型图谱。
Nature. 2005 Oct 27;437(7063):1299-320. doi: 10.1038/nature04226.
6
The essence of SNPs.单核苷酸多态性的本质。
Gene. 1999 Jul 8;234(2):177-86. doi: 10.1016/s0378-1119(99)00219-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验