Suppr超能文献

爬行动物体内珠蛋白基因结构支持了羊膜动物α-和β-珠蛋白基因进化的转座模型。

Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution.

机构信息

Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.

出版信息

Chromosome Res. 2010 Dec;18(8):897-907. doi: 10.1007/s10577-010-9164-5. Epub 2010 Nov 30.

Abstract

The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3' end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5' end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.

摘要

血红蛋白蛋白是身体内氧气运输所必需的,由α-和β-珠蛋白基因编码,这些基因排列在簇中。对于羊膜动物中独特的α-珠蛋白和β-珠蛋白簇的进化,转座模型比以前提出的全基因组复制模型要简单得多。根据这个模型,所有有颌脊椎动物都有一个古老的区域,包含α-和β-珠蛋白基因以及几个侧翼基因,其顺序为 MPG-C16orf35-(α-β)-GBY-LUC7L,已经保守了超过 4.1 亿年,而羊膜动物通过将古老区域中的一个转座β-珠蛋白基因插入由 CCKBR 和 RRM1 侧翼的嗅觉受体簇中,进化出了一个独特的β-珠蛋白簇。由于来自非鸟类爬行动物的信息匮乏,无法确定这种组织是否在所有羊膜动物中保守。为了填补这一空白,我们检查了蜥蜴目爬行动物,澳大利亚有角蜥蜴(Pogona vitticeps)(鬣蜥科)的球蛋白基因组织。我们在这里报告,α-珠蛋白簇(HBK,HBA)被 C16orf35 和 GBY 侧翼包围,并位于一对微染色体上,而β-珠蛋白簇在 3'端被 RRM1 侧翼包围,并位于 3 号染色体的长臂上。然而,在其他羊膜动物中,β-珠蛋白簇 5'端侧翼的 CCKBR 基因在 P. vitticeps 中位于 5 号染色体的短臂上,这表明β-珠蛋白簇和 CCKBR 之间至少在鬣蜥科发生了染色体断裂。我们来自爬行动物物种的数据进一步支持了羊膜动物β-珠蛋白基因簇进化的转座模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验