Suppr超能文献

视频力显微镜揭示了果蝇腹侧沟内陷的力学机制。

Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila.

机构信息

Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada.

出版信息

Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22111-6. doi: 10.1073/pnas.1006591107. Epub 2010 Dec 2.

Abstract

The absence of tools for mapping the forces that drive morphogenetic movements in embryos has impeded our understanding of animal development. Here we describe a unique approach, video force microscopy (VFM), that allows detailed, dynamic force maps to be produced from time-lapse images. The forces at work in an embryo are considered to be decomposed into active and passive elements, where active forces originate from contributions (e.g., actomyosin contraction) that do mechanical work to the system and passive ones (e.g., viscous cytoplasm) that dissipate energy. In the present analysis, the effects of all passive components are considered to be subsumed by an effective cytoplasmic viscosity, and the driving forces are resolved into equivalent forces along the edges of the polygonal boundaries into which the region of interest is divided. Advanced mathematical inverse methods are used to determine these driving forces. When applied to multiphoton sections of wild-type and mutant Drosophila melanogaster embryos, VFM is able to calculate the equivalent driving forces acting along individual cell edges and to do so with subminute temporal resolution. In the wild type, forces along the apical surface of the presumptive mesoderm are found to be large and to vary parabolically with time and angular position, whereas forces along the basal surface of the ectoderm, for example, are found to be smaller and nearly uniform with position. VFM shows that in mutants with reduced junction integrity and myosin II activity, the driving forces are reduced, thus accounting for ventral furrow failure.

摘要

缺乏用于绘制胚胎中形态发生运动驱动力的工具,阻碍了我们对动物发育的理解。在这里,我们描述了一种独特的方法,即视频力显微镜 (VFM),它可以从延时图像中生成详细的动态力图。胚胎中作用的力被认为可以分解为主动和被动元素,其中主动力源自对系统做功的贡献(例如肌动球蛋白收缩),而被动力(例如粘性细胞质)则耗散能量。在本分析中,所有被动成分的影响都被认为包含在有效细胞质粘度中,驱动力被解析为等效力,沿着感兴趣区域被划分为多边形边界的边缘。先进的数学逆方法用于确定这些驱动力。当应用于野生型和突变型黑腹果蝇胚胎的多光子切片时,VFM 能够计算沿单个细胞边缘作用的等效驱动力,并以亚分钟的时间分辨率进行计算。在野生型中,沿假定中胚层的顶表面的力被发现很大,并且随时间和角位置呈抛物线变化,而例如沿外胚层的底表面的力被发现较小且位置几乎均匀。VFM 表明,在连接完整性和肌球蛋白 II 活性降低的突变体中,驱动力降低,从而导致腹侧沟失败。

相似文献

1
Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22111-6. doi: 10.1073/pnas.1006591107. Epub 2010 Dec 2.
2
A biomechanical analysis of ventral furrow formation in the Drosophila melanogaster embryo.
PLoS One. 2012;7(4):e34473. doi: 10.1371/journal.pone.0034473. Epub 2012 Apr 12.
4
Cinemechanometry (CMM): A method to determine the forces that drive morphogenetic movements from time-lapse images.
Ann Biomed Eng. 2010 Sep;38(9):2937-47. doi: 10.1007/s10439-010-9998-1. Epub 2010 Jul 8.
5
Cell shape changes during gastrulation in Drosophila.
Development. 1990 Sep;110(1):73-84. doi: 10.1242/dev.110.1.73.
7
Mechanical Coupling between Endoderm Invagination and Axis Extension in Drosophila.
PLoS Biol. 2015 Nov 6;13(11):e1002292. doi: 10.1371/journal.pbio.1002292. eCollection 2015.
9
An integrated vertex model of the mesoderm invagination during the embryonic development of Drosophila.
J Theor Biol. 2023 Sep 7;572:111581. doi: 10.1016/j.jtbi.2023.111581. Epub 2023 Jul 20.
10
Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation.
Nat Commun. 2022 Jun 10;13(1):3348. doi: 10.1038/s41467-022-30493-3.

引用本文的文献

1
Nucleo-cytoskeletal coupling controls intracellular deformation partitioning during cell stretching.
R Soc Open Sci. 2025 Jul 30;12(7):250409. doi: 10.1098/rsos.250409. eCollection 2025 Jul.
2
Dynamic forces drive cell and organ morphology changes during embryonic development.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2418111122. doi: 10.1073/pnas.2418111122. Epub 2025 Jul 15.
3
Vertex models capturing subcellular scales in epithelial tissues.
PLoS Comput Biol. 2025 May 21;21(5):e1012993. doi: 10.1371/journal.pcbi.1012993. eCollection 2025 May.
5
Unsupervised spatiotemporal classification of deformation patterns of embryonic tissues matches their fate map.
iScience. 2025 Jan 9;28(3):111753. doi: 10.1016/j.isci.2025.111753. eCollection 2025 Mar 21.
6
Measuring mechanical stress in living tissues.
Nat Rev Phys. 2020 May 28;2(6):300-317. doi: 10.1038/s42254-020-0184-6.
7
Peeking into the future: inferring mechanics in dynamical tissues.
Biochem Soc Trans. 2024 Dec 19;52(6):2579-2592. doi: 10.1042/BST20230225.
8
Effective mechanical potential of cell-cell interaction in tissues harboring cavity and in cell sheet toward morphogenesis.
Front Cell Dev Biol. 2024 Jul 22;12:1414601. doi: 10.3389/fcell.2024.1414601. eCollection 2024.
9
Dynamical forces drive organ morphology changes during embryonic development.
bioRxiv. 2024 Jul 17:2024.07.13.603371. doi: 10.1101/2024.07.13.603371.
10
Numerical assessment of the applicability of geometry-based force inference on homogeneous and heterogeneous cells.
PLoS One. 2024 Apr 16;19(4):e0299016. doi: 10.1371/journal.pone.0299016. eCollection 2024.

本文引用的文献

1
Cinemechanometry (CMM): A method to determine the forces that drive morphogenetic movements from time-lapse images.
Ann Biomed Eng. 2010 Sep;38(9):2937-47. doi: 10.1007/s10439-010-9998-1. Epub 2010 Jul 8.
2
Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics.
Biophys J. 2009 Dec 16;97(12):3075-85. doi: 10.1016/j.bpj.2009.09.034.
3
Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes.
Phys Biol. 2009 Apr 2;6(1):016010. doi: 10.1088/1478-3975/6/1/016010.
5
A new cell-based FE model for the mechanics of embryonic epithelia.
Comput Methods Biomech Biomed Engin. 2007 Apr;10(2):121-8. doi: 10.1080/10255840601124704.
6
Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated.
Phys Biol. 2008 Apr 11;5(1):015003. doi: 10.1088/1478-3975/5/1/015003.
7
Tensile forces govern germ-layer organization in zebrafish.
Nat Cell Biol. 2008 Apr;10(4):429-36. doi: 10.1038/ncb1705. Epub 2008 Mar 23.
8
Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis.
Nat Rev Mol Cell Biol. 2007 Aug;8(8):633-44. doi: 10.1038/nrm2222.
9
Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2.
Science. 2007 Jan 19;315(5810):384-6. doi: 10.1126/science.1134833.
10
Multicellular rosette formation links planar cell polarity to tissue morphogenesis.
Dev Cell. 2006 Oct;11(4):459-70. doi: 10.1016/j.devcel.2006.09.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验