Lye Claire M, Blanchard Guy B, Naylor Huw W, Muresan Leila, Huisken Jan, Adams Richard J, Sanson Bénédicte
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, United Kingdom.
PLoS Biol. 2015 Nov 6;13(11):e1002292. doi: 10.1371/journal.pbio.1002292. eCollection 2015.
How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE) as a model. We found previously that cells elongate in the anteroposterior (AP) axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical interactions between tissues during morphogenesis.
遗传程序如何产生塑造胚胎的细胞内在力是当前积极研究的课题,但组织尺度的物理力如何影响形态发生的研究则较少。在此,我们以果蝇胚带延伸(GBE)为模型,探讨后者在轴延伸过程中的作用。我们先前发现,在延伸的胚带中,细胞沿前后(AP)轴伸长,这表明一种外在拉伸力有助于体轴延伸。在此,我们通过追踪细胞并随时间量化其顶端细胞变形,进一步表征了GBE过程中的AP细胞伸长模式。AP细胞伸长形成一个梯度,在胚胎后部达到顶峰,这与从那里传播的沿AP方向的拉伸力一致。为了确定可能是这种外在力来源的形态发生运动,我们使用光片显微镜对整个果蝇胚胎进行成像,在时间上绘制原肠胚形成运动图。我们发现中胚层和内胚层内陷都与GBE的开始同步。当中胚层内陷被阻断时,AP细胞伸长梯度仍然存在,但在内胚层内陷缺失时则被消除。这表明内胚层内陷是拉伸力的来源。接下来,我们在无细胞胚胎这一没有极化细胞插入的简化系统中寻找这种力的证据。使用粒子图像测速技术,我们确定肌球蛋白II向后流向假定的后内胚层,在无细胞胚胎中,后内胚层仍如野生型一样经历顶端收缩。我们使用激光消融探测这个后部区域,结果表明,与背腹方向或胚胎中更靠前的任何一个方向相比,AP方向的张力增加。我们提出,导致内胚层内陷的顶端收缩是有助于胚带延伸的外在力的来源。这突出了形态发生过程中组织间物理相互作用的重要性。