Suppr超能文献

结合激光显微手术和有限元建模评估细胞水平的上皮力学。

Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics.

机构信息

Department of Physics & Astronomy, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Biophys J. 2009 Dec 16;97(12):3075-85. doi: 10.1016/j.bpj.2009.09.034.

Abstract

Laser microsurgery and finite element modeling are used to determine the cell-level mechanics of the amnioserosa-a morphogenetically crucial epithelium on the dorsal surface of fruit fly embryos (Drosophila melanogaster). In the experiments, a tightly focused laser ablates a subcellular hole (1 microm in diameter) that passes clean through the epithelium. The surrounding cells recoil from the wound site with a large range of initial recoil velocities. These depend on the embryo's developmental stage and the subcellular wound site. The initial recoil (up to 0.1 s) is well reproduced by a base finite element model, which assumes a uniform effective viscosity inside the cells, a constant tension along each cell-cell boundary, and a large, potentially anisotropic, far-field stress--one that far exceeds the stress equivalent of the cell-edge tensions. After 0.1 s, the experimental recoils slow dramatically. This observation can be reproduced by adding viscoelastic rods along cell edges or as a fine prestressed mesh parallel to the apical and basal membranes of the cell. The mesh also reproduces a number of double-wounding experiments in which successive holes are drilled in a single cell.

摘要

激光微创手术和有限元建模被用于确定羊膜细胞水平力学特性,羊膜是果蝇胚胎(黑腹果蝇)背部表面形态发生关键的上皮组织。在实验中,聚焦的激光会将一个亚细胞大小的孔(直径 1 微米)干净地穿过上皮组织。周围的细胞会从伤口处强烈回弹,回弹初始速度范围很大。这些速度取决于胚胎的发育阶段和亚细胞伤口位置。基本的有限元模型可以很好地重现初始回弹,该模型假设细胞内的有效粘度均匀,每个细胞-细胞边界的张力恒定,以及一个大的、潜在各向异性的远场应力——远超过细胞边缘张力的等效应力。0.1 秒后,实验中的回弹速度显著减慢。这种观察结果可以通过在细胞边缘添加粘弹性棒或与细胞顶膜和底膜平行的精细预应力网来重现。该网格还再现了许多双重打孔实验,其中在单个细胞中连续打孔。

相似文献

1
Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics.
Biophys J. 2009 Dec 16;97(12):3075-85. doi: 10.1016/j.bpj.2009.09.034.
2
Modeling cell elongation during germ band retraction: cell autonomy versus applied anisotropic stress.
New J Phys. 2014 May 1;16(2014):055003. doi: 10.1088/1367-2630/16/5/055003.
3
Elongated Cells Drive Morphogenesis in a Surface-Wrapped Finite-Element Model of Germband Retraction.
Biophys J. 2019 Jul 9;117(1):157-169. doi: 10.1016/j.bpj.2019.05.023. Epub 2019 Jun 5.
4
Anisotropic Finite Element Modeling Based on a Harmonic Field for Patient-Specific Sclera.
Biomed Res Int. 2017;2017:6073059. doi: 10.1155/2017/6073059. Epub 2017 Feb 7.
5
Probing embryonic tissue mechanics with laser hole drilling.
Phys Biol. 2009 May 1;6(3):036004. doi: 10.1088/1478-3975/6/3/036004.
6
Biomechanical Modeling of Femtosecond Laser Keyhole endokeratophakia Surgery.
J Refract Surg. 2015 Jul;31(7):480-6. doi: 10.3928/1081597X-20150623-07.
8
Apical oscillations in amnioserosa cells: basolateral coupling and mechanical autonomy.
Biophys J. 2013 Jul 2;105(1):255-65. doi: 10.1016/j.bpj.2013.05.027.
9
Emergent material properties of developing epithelial tissues.
BMC Biol. 2015 Nov 23;13:98. doi: 10.1186/s12915-015-0200-y.
10
Cell-level finite element studies of viscous cells in planar aggregates.
J Biomech Eng. 2000 Aug;122(4):394-401. doi: 10.1115/1.1286563.

引用本文的文献

3
The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities.
Front Cell Dev Biol. 2025 Mar 18;13:1564626. doi: 10.3389/fcell.2025.1564626. eCollection 2025.
4
Measuring mechanical stress in living tissues.
Nat Rev Phys. 2020 May 28;2(6):300-317. doi: 10.1038/s42254-020-0184-6.
5
Direct force measurement and loading on developing tissues in intact avian embryos.
Development. 2023 May 1;150(9). doi: 10.1242/dev.201054. Epub 2023 May 4.
6
Homeotic compartment curvature and tension control spatiotemporal folding dynamics.
Nat Commun. 2023 Feb 3;14(1):594. doi: 10.1038/s41467-023-36305-6.
7
Two-Photon Cell and Tissue Level Laser Ablation Methods to Study Morphogenetic Biomechanics.
Methods Mol Biol. 2022;2438:217-230. doi: 10.1007/978-1-0716-2035-9_14.
8
Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis.
Small. 2022 Feb;18(6):e2103466. doi: 10.1002/smll.202103466. Epub 2021 Nov 26.
9
Cell-substrate mechanics guide collective cell migration through intercellular adhesion: a dynamic finite element cellular model.
Biomech Model Mechanobiol. 2020 Oct;19(5):1781-1796. doi: 10.1007/s10237-020-01308-5. Epub 2020 Feb 27.
10
Biophysical principles of choanoflagellate self-organization.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1303-1311. doi: 10.1073/pnas.1909447117. Epub 2020 Jan 2.

本文引用的文献

1
Mechanical determinants of epithelium thickness in early-stage embryos.
J Mech Behav Biomed Mater. 2009 Oct;2(5):494-501. doi: 10.1016/j.jmbbm.2008.12.004. Epub 2008 Dec 14.
3
Probing embryonic tissue mechanics with laser hole drilling.
Phys Biol. 2009 May 1;6(3):036004. doi: 10.1088/1478-3975/6/3/036004.
4
Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient.
HFSP J. 2008 Aug;2(4):220-37. doi: 10.2976/1.2955565. Epub 2008 Jul 23.
5
Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis.
Nat Cell Biol. 2008 Dec;10(12):1401-10. doi: 10.1038/ncb1798. Epub 2008 Nov 2.
7
Apoptotic force and tissue dynamics during Drosophila embryogenesis.
Science. 2008 Sep 19;321(5896):1683-6. doi: 10.1126/science.1157052.
8
A new cell-based FE model for the mechanics of embryonic epithelia.
Comput Methods Biomech Biomed Engin. 2007 Apr;10(2):121-8. doi: 10.1080/10255840601124704.
9
Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated.
Phys Biol. 2008 Apr 11;5(1):015003. doi: 10.1088/1478-3975/5/1/015003.
10
Hydrodynamic simulation of multicellular embryo invagination.
Phys Biol. 2008 Apr 10;5(1):015005. doi: 10.1088/1478-3975/5/1/015005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验