Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States.
Biochemistry. 2011 Jan 11;50(1):144-50. doi: 10.1021/bi101819m. Epub 2010 Dec 13.
The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. The crystal structure of the MauG-preMADH complex revealed the presence of a Ca(2+) in proximity to the two hemes [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]. This Ca(2+) did not readily dissociate; however, after extensive treatment with EGTA or EDTA MauG was no longer able to catalyze TTQ biosynthesis and exhibited altered absorption and resonance Raman spectra. The changes in spectral features are consistent with Ca(2+)-dependent changes in heme spin state and conformation. Addition of H(2)O(2) to the Ca(2+)-depleted MauG did not yield spectral changes characteristic of formation of the bis-Fe(IV) state which is stabilized in native MauG. After addition of Ca(2+) to the Ca(2+)-depleted MauG, full TTQ biosynthesis activity and reactivity toward H(2)O(2) were restored, and the spectral properties returned to those of native MauG. Kinetic and equilibrium studies of Ca(2+) binding to Ca(2+)-depleted MauG indicated a two-step mechanism. Ca(2+) initially reversibly binds to Ca(2+)-depleted MauG (K(d) = 22.4 μM) and is followed by a relatively slow (k = 1.4 × 10(-3) s(-1)) but highly favorable (K(eq) = 4.2) conformational change, yielding an equilibrium dissociation constant K(d,eq) value of 5.3 μM. The circular dichroism spectra of native and Ca(2+)-depleted MauG were essentially the same, consistent with Ca(2+)-induced conformational changes involving domain or loop movements rather than general unfolding or alteration of secondary structure. These results are discussed in the context of the structures of MauG and heme-containing peroxidases.
二血红素酶 MauG 催化六电子氧化反应,这是前甲基胺脱氢酶 (preMADH) 翻译后修饰所必需的,以完成其蛋白衍生色氨酸色原醌 (TTQ) 辅因子的生物合成。MauG-preMADH 复合物的晶体结构揭示了两个血红素附近存在一个 Ca(2+) [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]。这个 Ca(2+) 不易解离;然而,经过 EGTA 或 EDTA 的广泛处理后,MauG 不再能够催化 TTQ 生物合成,并表现出改变的吸收和共振拉曼光谱。光谱特征的变化与血红素自旋态和构象的 Ca(2+) 依赖性变化一致。向 Ca(2+) 耗尽的 MauG 中添加 H(2)O(2) 不会产生形成双 Fe(IV) 状态的特征光谱变化,该状态在天然 MauG 中稳定。向 Ca(2+) 耗尽的 MauG 中添加 Ca(2+) 后,完全 TTQ 生物合成活性和对 H(2)O(2) 的反应性得以恢复,光谱特性恢复到天然 MauG 的特性。Ca(2+) 与 Ca(2+) 耗尽的 MauG 结合的动力学和平衡研究表明存在两步机制。Ca(2+) 最初可逆地与 Ca(2+) 耗尽的 MauG 结合(K(d) = 22.4 μM),随后是相对缓慢(k = 1.4 × 10(-3) s(-1))但非常有利的(K(eq) = 4.2)构象变化,产生平衡解离常数 K(d,eq) 值为 5.3 μM。天然和 Ca(2+) 耗尽的 MauG 的圆二色光谱基本相同,表明 Ca(2+) 诱导的构象变化涉及结构域或环的运动,而不是一般的展开或二级结构的改变。这些结果在 MauG 和血红素过氧化物酶的结构背景下进行了讨论。