Suppr超能文献

细胞周期中基因表达锁相的全局分析:网络建模中的潜力。

Global analysis of phase locking in gene expression during cell cycle: the potential in network modeling.

作者信息

Gao Shouguo, Hartman John L, Carter Justin L, Hessner Martin J, Wang Xujing

机构信息

Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.

出版信息

BMC Syst Biol. 2010 Dec 3;4:167. doi: 10.1186/1752-0509-4-167.

Abstract

BACKGROUND

In nonlinear dynamic systems, synchrony through oscillation and frequency modulation is a general control strategy to coordinate multiple modules in response to external signals. Conversely, the synchrony information can be utilized to infer interaction. Increasing evidence suggests that frequency modulation is also common in transcription regulation.

RESULTS

In this study, we investigate the potential of phase locking analysis, a technique to study the synchrony patterns, in the transcription network modeling of time course gene expression data. Using the yeast cell cycle data, we show that significant phase locking exists between transcription factors and their targets, between gene pairs with prior evidence of physical or genetic interactions, and among cell cycle genes. When compared with simple correlation we found that the phase locking metric can identify gene pairs that interact with each other more efficiently. In addition, it can automatically address issues of arbitrary time lags or different dynamic time scales in different genes, without the need for alignment. Interestingly, many of the phase locked gene pairs exhibit higher order than 1:1 locking, and significant phase lags with respect to each other. Based on these findings we propose a new phase locking metric for network reconstruction using time course gene expression data. We show that it is efficient at identifying network modules of focused biological themes that are important to cell cycle regulation.

CONCLUSIONS

Our result demonstrates the potential of phase locking analysis in transcription network modeling. It also suggests the importance of understanding the dynamics underlying the gene expression patterns.

摘要

背景

在非线性动力系统中,通过振荡和频率调制实现同步是一种普遍的控制策略,用于协调多个模块以响应外部信号。相反,同步信息可用于推断相互作用。越来越多的证据表明,频率调制在转录调控中也很常见。

结果

在本研究中,我们研究了锁相分析(一种研究同步模式的技术)在时间进程基因表达数据的转录网络建模中的潜力。使用酵母细胞周期数据,我们表明转录因子与其靶标之间、具有物理或遗传相互作用先前证据的基因对之间以及细胞周期基因之间存在显著的锁相。与简单相关性相比,我们发现锁相度量可以更有效地识别相互作用的基因对。此外,它可以自动解决不同基因中任意时间滞后或不同动态时间尺度的问题,而无需对齐。有趣的是,许多锁相基因对表现出高于1:1的锁相阶数,并且相互之间存在显著的相位滞后。基于这些发现,我们提出了一种使用时间进程基因表达数据进行网络重建的新锁相度量。我们表明它在识别对细胞周期调控重要的特定生物学主题的网络模块方面是有效的。

结论

我们的结果证明了锁相分析在转录网络建模中的潜力。它还表明了理解基因表达模式背后动力学的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验