Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239-3098, USA.
Neuroscience. 2011 Feb 3;174:1-9. doi: 10.1016/j.neuroscience.2010.11.053. Epub 2010 Dec 1.
Synaptic terminals often contain metabotropic receptors that act as autoreceptors to control neurotransmitter release. Less appreciated is the heterosynaptic crossover of glutamate receptors to control GABA release and vice versa GABA receptors which control glutamate release. In the brainstem, activation of solitary tract (ST) afferents releases glutamate onto second-order neurons within the solitary tract nucleus (NTS). Multiple metabotropic receptors are expressed in NTS for glutamate (mGluRs) and for GABA (GABA(B)). The present report identifies mGluR regulation of glutamate release at second and higher order sensory neurons in NTS slices. We found strong inhibition of glutamate release to group II and III mGluR activation on mechanically isolated NTS neurons. However, the same mGluR-selective antagonists paradoxically decreased glutamate release (miniature, mEPSCs) at identified second-order NTS neurons. Unaltered amplitudes were consistent with selective presynaptic mGluR actions. GABA(B) blockade in slices resolved the paradoxical differences and revealed a group II/III mGluR negative feedback of mEPSC frequency similar to isolated neurons. Thus, the balance of glutamate control is tipped by mGluR receptors on GABA terminals resulting in predominating heterosynaptic GABA(B) inhibition of glutamate release. Regulation by mGluR or GABA(B) was not consistently evident in excitatory postsynaptic currents (EPSCs) in higher-order NTS neurons demonstrating metabotropic receptor distinctions in processing at different NTS pathway stages. These cellular localizations may figure importantly in understanding interventions such as brain-penetrant compounds or microinjections. We conclude that afferent glutamate release in NTS produces a coordinate presynaptic activation of co-localized mGluR and GABA(B) feedback on cranial afferent terminals to regulate glutamate release.
突触前终端通常包含代谢型受体,作为自身受体控制神经递质的释放。人们较少注意到的是谷氨酸能受体的异突触交叉作用,以控制 GABA 的释放,反之亦然,GABA 受体控制谷氨酸的释放。在脑干中,孤束( solitary tract ,ST )传入纤维的激活会将谷氨酸释放到孤束核( solitary tract nucleus ,NTS )中的二级神经元上。NTS 中表达了多种代谢型谷氨酸能受体( metabotropic glutamate receptors ,mGluRs )和 GABA 受体( GABA 受体( GABA ( B )))。本报告确定了 NTS 切片中二级和更高阶感觉神经元上 mGluR 对谷氨酸释放的调节。我们发现,机械分离的 NTS 神经元上,对 II 组和 III 组 mGluR 的激活有强烈的抑制谷氨酸释放的作用。然而,相同的 mGluR 选择性拮抗剂却反常地降低了鉴定的第二级 NTS 神经元中的谷氨酸释放(微小兴奋性突触后电流,mEPSCs )。未改变的幅度与选择性突触前 mGluR 作用一致。在切片中阻断 GABA ( B )可以解决这种矛盾的差异,并显示出类似于孤立神经元的 II 组/ III 组 mGluR 负反馈对 mEPSC 频率的影响。因此,GABA 能末梢上的 mGluR 受体平衡了谷氨酸的控制,导致异突触 GABA ( B )抑制谷氨酸释放占主导地位。在更高阶 NTS 神经元的兴奋性突触后电流( EPSCs )中,mGluR 或 GABA ( B )的调节并不总是明显,这表明代谢型受体在不同的 NTS 通路阶段的处理中存在差异。这些细胞定位在理解干预措施(如穿透脑的化合物或微注射)方面可能非常重要。我们的结论是,NTS 中的传入谷氨酸释放会产生协调的突触前激活,使共存的 mGluR 和 GABA ( B )反馈作用于颅神经传入末梢,以调节谷氨酸的释放。