文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

贝叶斯对称 EEG/fMRI 融合与空间自适应先验。

Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors.

机构信息

Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA.

出版信息

Neuroimage. 2011 Mar 1;55(1):113-32. doi: 10.1016/j.neuroimage.2010.11.037. Epub 2010 Dec 2.


DOI:10.1016/j.neuroimage.2010.11.037
PMID:21130173
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3037417/
Abstract

In this paper, we propose a novel symmetrical EEG/fMRI fusion method which combines EEG and fMRI by means of a common generative model. We use a total variation (TV) prior to model the spatial distribution of the cortical current responses and hemodynamic response functions, and utilize spatially adaptive temporal priors to model their temporal shapes. The spatial adaptivity of the prior model allows for adaptation to the local characteristics of the estimated responses and leads to high estimation performance for the cortical current distribution and the hemodynamic response functions. We utilize a Bayesian formulation with a variational Bayesian framework and obtain a fully automatic fusion algorithm. Simulations with synthetic data and experiments with real data from a multimodal study on face perception demonstrate the performance of the proposed method.

摘要

在本文中,我们提出了一种新的对称 EEG/fMRI 融合方法,该方法通过一个通用的生成模型将 EEG 和 fMRI 结合在一起。我们使用全变差(TV)先验来模拟皮质电流响应和血流动力学响应函数的空间分布,并利用空间自适应时间先验来模拟它们的时间形状。先验模型的空间适应性允许适应估计响应的局部特征,从而实现对皮质电流分布和血流动力学响应函数的高估计性能。我们利用贝叶斯公式和变分贝叶斯框架,得到了一个完全自动的融合算法。通过对人脸感知的多模态研究的真实数据的模拟和实验,验证了所提出方法的性能。

相似文献

[1]
Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors.

Neuroimage. 2010-12-2

[2]
Bayesian wavelet-based analysis of functional magnetic resonance time series.

Magn Reson Imaging. 2009-5

[3]
Search for patterns of functional specificity in the brain: a nonparametric hierarchical Bayesian model for group fMRI data.

Neuroimage. 2011-8-22

[4]
Variational bayesian blind deconvolution using a total variation prior.

IEEE Trans Image Process. 2009-1

[5]
Variational Bayesian image restoration based on a product of t-distributions image prior.

IEEE Trans Image Process. 2008-10

[6]
Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals.

Neuroimage. 2008-10-1

[7]
Bayesian fMRI data analysis with sparse spatial basis function priors.

Neuroimage. 2007-2-1

[8]
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.

Neuroimage. 2014-1-1

[9]
Simultaneous registration and segmentation of anatomical structures from brain MRI.

Med Image Comput Comput Assist Interv. 2005

[10]
A nonparametric bayesian approach to detecting spatial activation patterns in fMRI data.

Med Image Comput Comput Assist Interv. 2006

引用本文的文献

[1]
Spatial and spatio-temporal statistical analyses of retinal images: a review of methods and applications.

BMJ Open Ophthalmol. 2020-5-28

[2]
A Novel Noninvasive Approach Based on SPECT and EEG for the Location of the Epileptogenic Zone in Pharmacoresistant Non-Lesional Epilepsy.

Medicina (Kaunas). 2019-8-14

[3]
Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI.

Front Neurosci. 2018-1-23

[4]
3D spatially-adaptive canonical correlation analysis: Local and global methods.

Neuroimage. 2017-12-14

[5]
s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography.

Front Neurosci. 2016-11-28

[6]
Bayesian Models for fMRI Data Analysis.

Wiley Interdiscip Rev Comput Stat. 2015

[7]
New levels of language processing complexity and organization revealed by granger causation.

Front Psychol. 2012-11-19

[8]
Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

PLoS One. 2011-9-22

[9]
A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration.

Front Hum Neurosci. 2011-8-24

本文引用的文献

[1]
Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach.

J Cogn Neurosci. 1993

[2]
Combining steady-state visual evoked potentials and f MRI to localize brain activity during selective attention.

Hum Brain Mapp. 1997

[3]
Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation.

Neuroimage. 2010-3-6

[4]
A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction.

Hum Brain Mapp. 2010-10

[5]
Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG.

Neuroimage. 2009-7-10

[6]
Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization.

Neuroimage. 2009-1-15

[7]
A unified Bayesian framework for MEG/EEG source imaging.

Neuroimage. 2009-2-1

[8]
Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC.

Neuroimage. 2008-5-1

[9]
Parameter estimation in TV image restoration using variational distribution approximation.

IEEE Trans Image Process. 2008-3

[10]
Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging.

Neuroimage. 2008-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索