Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA.
Neuroimage. 2011 Mar 1;55(1):113-32. doi: 10.1016/j.neuroimage.2010.11.037. Epub 2010 Dec 2.
In this paper, we propose a novel symmetrical EEG/fMRI fusion method which combines EEG and fMRI by means of a common generative model. We use a total variation (TV) prior to model the spatial distribution of the cortical current responses and hemodynamic response functions, and utilize spatially adaptive temporal priors to model their temporal shapes. The spatial adaptivity of the prior model allows for adaptation to the local characteristics of the estimated responses and leads to high estimation performance for the cortical current distribution and the hemodynamic response functions. We utilize a Bayesian formulation with a variational Bayesian framework and obtain a fully automatic fusion algorithm. Simulations with synthetic data and experiments with real data from a multimodal study on face perception demonstrate the performance of the proposed method.
在本文中,我们提出了一种新的对称 EEG/fMRI 融合方法,该方法通过一个通用的生成模型将 EEG 和 fMRI 结合在一起。我们使用全变差(TV)先验来模拟皮质电流响应和血流动力学响应函数的空间分布,并利用空间自适应时间先验来模拟它们的时间形状。先验模型的空间适应性允许适应估计响应的局部特征,从而实现对皮质电流分布和血流动力学响应函数的高估计性能。我们利用贝叶斯公式和变分贝叶斯框架,得到了一个完全自动的融合算法。通过对人脸感知的多模态研究的真实数据的模拟和实验,验证了所提出方法的性能。
Neuroimage. 2010-12-2
Magn Reson Imaging. 2009-5
IEEE Trans Image Process. 2009-1
IEEE Trans Image Process. 2008-10
Neuroimage. 2007-2-1
Neuroimage. 2014-1-1
Med Image Comput Comput Assist Interv. 2005
Med Image Comput Comput Assist Interv. 2006
BMJ Open Ophthalmol. 2020-5-28
Front Neurosci. 2018-1-23
Neuroimage. 2017-12-14
Front Neurosci. 2016-11-28
Wiley Interdiscip Rev Comput Stat. 2015
Front Psychol. 2012-11-19
Neuroimage. 2009-2-1
Neuroimage. 2008-5-1
IEEE Trans Image Process. 2008-3