The Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
Cell Signal. 2011 Apr;23(4):673-82. doi: 10.1016/j.cellsig.2010.11.021. Epub 2010 Dec 3.
Intracellular signaling pathways that regulate the production of lethal proteins in central neurons are not fully characterized. Previously, we reported induction of a novel neuronal protein neuronal pentraxin 1 (NP1) in neonatal brain injury following hypoxia-ischemia (HI); however, how NP1 is induced in hypoxic-ischemic neuronal death remains elusive. Here, we have elucidated the intracellular signaling regulation of NP1 induction in neuronal death. Primary cortical neurons showed a hypoxic-ischemia time-dependent increase in cell death and that NP1 induction preceded the actual neuronal death. NP1 gene silencing by NP1-specific siRNA significantly reduced neuronal death. The specificity of NP1 induction in neuronal death was further confirmed by using NP1 (-/-) null primary cortical neurons. Declines in phospho-Akt (i.e. deactivation) were observed concurrent with decreased phosphorylation of its downstream substrate GSK-3α/β (at Ser21/Ser9) (i.e. activation) and increased GSK-3α and GSK-3β kinase activities, which occurred prior to NP1 induction. Expression of a dominant-negative inhibitor of Akt (Akt-kd) blocked phosphorylation of GSK-3α/β and subsequently enhanced NP1 induction. Whereas, overexpression of constitutively activated Akt (Akt-myr) or wild-type Akt (wtAkt) increased GSK-α/β phosphorylation and attenuated NP1 induction. Transfection of neurons with GSK-3α siRNA completely blocked NP1 induction and cell death. Similarly, overexpression of the GSK-3β inhibitor Frat1 or the kinase mutant GSK-3βKM, but not the wild-type GSK-3βWT, blocked NP1 induction and rescued neurons from death. Our findings clearly implicate both GSK-3α- and GSK-3β-dependent mechanism of NP1 induction and point to a novel mechanism in the regulation of hypoxic-ischemic neuronal death.
调控中枢神经元中致死蛋白产生的细胞内信号通路尚未完全阐明。我们先前报道过,在缺氧缺血(HI)后,新生脑损伤会诱导一种新的神经元蛋白神经元五聚素 1(NP1);然而,NP1 如何在缺氧缺血性神经元死亡中被诱导仍不清楚。在这里,我们阐明了 NP1 诱导在神经元死亡中的细胞内信号调控。原代皮质神经元在缺氧缺血时间依赖性增加细胞死亡,并且 NP1 的诱导先于实际的神经元死亡。NP1 特异性 siRNA 的 NP1 基因沉默显著降低了神经元死亡。NP1 (-/-) 缺失型原代皮质神经元进一步证实了 NP1 诱导在神经元死亡中的特异性。同时观察到磷酸化 Akt 的下降(即失活),伴随着其下游底物 GSK-3α/β(Ser21/Ser9)的磷酸化减少(即激活)和 GSK-3α 和 GSK-3β激酶活性增加,这发生在 NP1 诱导之前。表达 Akt 的显性失活抑制剂(Akt-kd)阻断了 GSK-3α/β 的磷酸化,随后增强了 NP1 的诱导。然而,组成型激活 Akt(Akt-myr)或野生型 Akt(wtAkt)的过表达增加了 GSK-α/β 的磷酸化,并减弱了 NP1 的诱导。神经元的转染与 GSK-3α siRNA 完全阻断 NP1 诱导和细胞死亡。同样,GSK-3β 抑制剂 Frat1 或激酶突变体 GSK-3βKM 的过表达,但不是野生型 GSK-3βWT,阻断了 NP1 的诱导并挽救了神经元免于死亡。我们的研究结果明确表明 NP1 诱导依赖于 GSK-3α 和 GSK-3β,并且指出了调控缺氧缺血性神经元死亡的一种新机制。