Suppr超能文献

胞质苹果酸酶在工程化酿酒酵母菌株中的氨甲酰转移作用。

Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains.

机构信息

Department of Biotechnology, Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands.

出版信息

Appl Environ Microbiol. 2011 Feb;77(3):732-8. doi: 10.1128/AEM.02132-10. Epub 2010 Dec 3.

Abstract

Malic enzyme catalyzes the reversible oxidative decarboxylation of malate to pyruvate and CO(2). The Saccharomyces cerevisiae MAE1 gene encodes a mitochondrial malic enzyme whose proposed physiological roles are related to the oxidative, malate-decarboxylating reaction. Hitherto, the inability of pyruvate carboxylase-negative (Pyc(-)) S. cerevisiae strains to grow on glucose suggested that Mae1p cannot act as a pyruvate-carboxylating, anaplerotic enzyme. In this study, relocation of malic enzyme to the cytosol and creation of thermodynamically favorable conditions for pyruvate carboxylation by metabolic engineering, process design, and adaptive evolution, enabled malic enzyme to act as the sole anaplerotic enzyme in S. cerevisiae. The Escherichia coli NADH-dependent sfcA malic enzyme was expressed in a Pyc(-) S. cerevisiae background. When PDC2, a transcriptional regulator of pyruvate decarboxylase genes, was deleted to increase intracellular pyruvate levels and cells were grown under a CO(2) atmosphere to favor carboxylation, adaptive evolution yielded a strain that grew on glucose (specific growth rate, 0.06 ± 0.01 h(-1)). Growth of the evolved strain was enabled by a single point mutation (Asp336Gly) that switched the cofactor preference of E. coli malic enzyme from NADH to NADPH. Consistently, cytosolic relocalization of the native Mae1p, which can use both NADH and NADPH, in a pyc1,2Δ pdc2Δ strain grown under a CO(2) atmosphere, also enabled slow-growth on glucose. Although growth rates of these strains are still low, the higher ATP efficiency of carboxylation via malic enzyme, compared to the pyruvate carboxylase pathway, may contribute to metabolic engineering of S. cerevisiae for anaerobic, high-yield C(4)-dicarboxylic acid production.

摘要

苹果酸酶催化苹果酸的可逆氧化脱羧生成丙酮酸和 CO(2)。酿酒酵母的 MAE1 基因编码一种线粒体苹果酸酶,其推测的生理作用与氧化脱羧反应有关。迄今为止,缺乏丙酮酸羧化酶的(Pyc(-))酿酒酵母菌株不能在葡萄糖上生长,这表明 Mae1p 不能作为一种丙酮酸羧化、补充草酰乙酸的酶。在这项研究中,通过代谢工程、过程设计和适应性进化,将苹果酸酶重新定位到细胞质中,并为丙酮酸羧化创造热力学有利的条件,使苹果酸酶能够作为酿酒酵母中唯一的补充草酰乙酸的酶。大肠杆菌 NADH 依赖性 sfcA 苹果酸酶在 Pyc(-)酿酒酵母背景中表达。当 PDC2,即丙酮酸脱羧酶基因的转录调节因子,被删除以增加细胞内丙酮酸水平,并在 CO(2)气氛下生长以有利于羧化时,适应性进化产生了一种能够在葡萄糖上生长的菌株(比生长速率,0.06±0.01 h(-1))。进化菌株的生长得益于一个单点突变(Asp336Gly),该突变将大肠杆菌苹果酸酶的辅因子偏好从 NADH 转换为 NADPH。一致地,在 CO(2)气氛下生长的 pyc1,2Δ pdc2Δ 菌株中,将天然 Mae1p 重新定位到细胞质中,该酶可以同时使用 NADH 和 NADPH,也可以在葡萄糖上缓慢生长。尽管这些菌株的生长速率仍然较低,但与丙酮酸羧化酶途径相比,通过苹果酸酶进行羧化的 ATP 效率更高,这可能有助于酿酒酵母的代谢工程,以实现厌氧、高产 C(4)-二羧酸的生产。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验