van Maris Antonius J A, Luttik Marijke A H, Winkler Aaron A, van Dijken Johannes P, Pronk Jack T
Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands.
Appl Environ Microbiol. 2003 Apr;69(4):2094-9. doi: 10.1128/AEM.69.4.2094-2099.2003.
Pyruvate decarboxylase-negative (Pdc(-)) mutants of Saccharomyces cerevisiae require small amounts of ethanol or acetate to sustain aerobic, glucose-limited growth. This nutritional requirement has been proposed to originate from (i) a need for cytosolic acetyl coenzyme A (acetyl-CoA) for lipid and lysine biosynthesis and (ii) an inability to export mitochondrial acetyl-CoA to the cytosol. To test this hypothesis and to eliminate the C(2) requirement of Pdc(-) S. cerevisiae, we attempted to introduce an alternative pathway for the synthesis of cytosolic acetyl-CoA. The addition of L-carnitine to growth media did not restore growth of a Pdc(-) strain on glucose, indicating that the C(2) requirement was not solely due to the inability of S. cerevisiae to synthesize this compound. The S. cerevisiae GLY1 gene encodes threonine aldolase (EC 4.1.2.5), which catalyzes the cleavage of threonine to glycine and acetaldehyde. Overexpression of GLY1 enabled a Pdc(-) strain to grow under conditions of carbon limitation in chemostat cultures on glucose as the sole carbon source, indicating that acetaldehyde formed by threonine aldolase served as a precursor for the synthesis of cytosolic acetyl-CoA. Fractionation studies revealed a cytosolic localization of threonine aldolase. The absence of glycine in these cultures indicates that all glycine produced by threonine aldolase was either dissimilated or assimilated. These results confirm the involvement of pyruvate decarboxylase in cytosolic acetyl-CoA synthesis. The Pdc(-) GLY1 overexpressing strain was still glucose sensitive with respect to growth in batch cultivations. Like any other Pdc(-) strain, it failed to grow on excess glucose in batch cultures and excreted pyruvate when transferred from glucose limitation to glucose excess.
酿酒酵母的丙酮酸脱羧酶阴性(Pdc(-))突变体需要少量乙醇或乙酸盐来维持需氧、葡萄糖受限的生长。有人提出这种营养需求源于:(i)脂质和赖氨酸生物合成需要胞质乙酰辅酶A(acetyl-CoA);(ii)无法将线粒体乙酰辅酶A输出到胞质溶胶。为了验证这一假设并消除Pdc(-)酿酒酵母对C2化合物的需求,我们试图引入一条合成胞质乙酰辅酶A的替代途径。向生长培养基中添加L-肉碱并不能恢复Pdc(-)菌株在葡萄糖上的生长,这表明对C2化合物的需求并非仅仅是由于酿酒酵母无法合成该化合物。酿酒酵母GLY1基因编码苏氨酸醛缩酶(EC 4.1.2.5),它催化苏氨酸裂解为甘氨酸和乙醛。GLY1的过表达使Pdc(-)菌株能够在恒化器培养中以葡萄糖作为唯一碳源的碳限制条件下生长,这表明苏氨酸醛缩酶形成的乙醛可作为合成胞质乙酰辅酶A的前体。分级分离研究表明苏氨酸醛缩酶定位于胞质溶胶。这些培养物中没有甘氨酸,这表明苏氨酸醛缩酶产生的所有甘氨酸要么被异化要么被同化。这些结果证实了丙酮酸脱羧酶参与胞质乙酰辅酶A的合成。在分批培养中,过表达GLY1的Pdc(-)菌株对葡萄糖仍敏感。与任何其他Pdc(-)菌株一样,它在分批培养中无法在过量葡萄糖上生长,并且当从葡萄糖限制转移到葡萄糖过量时会分泌丙酮酸。