Suppr超能文献

在葡萄糖受限的酿酒酵母恒化器培养物中,苏氨酸醛缩酶的过量产生规避了丙酮酸脱羧酶的生物合成作用。

Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae.

作者信息

van Maris Antonius J A, Luttik Marijke A H, Winkler Aaron A, van Dijken Johannes P, Pronk Jack T

机构信息

Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands.

出版信息

Appl Environ Microbiol. 2003 Apr;69(4):2094-9. doi: 10.1128/AEM.69.4.2094-2099.2003.

Abstract

Pyruvate decarboxylase-negative (Pdc(-)) mutants of Saccharomyces cerevisiae require small amounts of ethanol or acetate to sustain aerobic, glucose-limited growth. This nutritional requirement has been proposed to originate from (i) a need for cytosolic acetyl coenzyme A (acetyl-CoA) for lipid and lysine biosynthesis and (ii) an inability to export mitochondrial acetyl-CoA to the cytosol. To test this hypothesis and to eliminate the C(2) requirement of Pdc(-) S. cerevisiae, we attempted to introduce an alternative pathway for the synthesis of cytosolic acetyl-CoA. The addition of L-carnitine to growth media did not restore growth of a Pdc(-) strain on glucose, indicating that the C(2) requirement was not solely due to the inability of S. cerevisiae to synthesize this compound. The S. cerevisiae GLY1 gene encodes threonine aldolase (EC 4.1.2.5), which catalyzes the cleavage of threonine to glycine and acetaldehyde. Overexpression of GLY1 enabled a Pdc(-) strain to grow under conditions of carbon limitation in chemostat cultures on glucose as the sole carbon source, indicating that acetaldehyde formed by threonine aldolase served as a precursor for the synthesis of cytosolic acetyl-CoA. Fractionation studies revealed a cytosolic localization of threonine aldolase. The absence of glycine in these cultures indicates that all glycine produced by threonine aldolase was either dissimilated or assimilated. These results confirm the involvement of pyruvate decarboxylase in cytosolic acetyl-CoA synthesis. The Pdc(-) GLY1 overexpressing strain was still glucose sensitive with respect to growth in batch cultivations. Like any other Pdc(-) strain, it failed to grow on excess glucose in batch cultures and excreted pyruvate when transferred from glucose limitation to glucose excess.

摘要

酿酒酵母的丙酮酸脱羧酶阴性(Pdc(-))突变体需要少量乙醇或乙酸盐来维持需氧、葡萄糖受限的生长。有人提出这种营养需求源于:(i)脂质和赖氨酸生物合成需要胞质乙酰辅酶A(acetyl-CoA);(ii)无法将线粒体乙酰辅酶A输出到胞质溶胶。为了验证这一假设并消除Pdc(-)酿酒酵母对C2化合物的需求,我们试图引入一条合成胞质乙酰辅酶A的替代途径。向生长培养基中添加L-肉碱并不能恢复Pdc(-)菌株在葡萄糖上的生长,这表明对C2化合物的需求并非仅仅是由于酿酒酵母无法合成该化合物。酿酒酵母GLY1基因编码苏氨酸醛缩酶(EC 4.1.2.5),它催化苏氨酸裂解为甘氨酸和乙醛。GLY1的过表达使Pdc(-)菌株能够在恒化器培养中以葡萄糖作为唯一碳源的碳限制条件下生长,这表明苏氨酸醛缩酶形成的乙醛可作为合成胞质乙酰辅酶A的前体。分级分离研究表明苏氨酸醛缩酶定位于胞质溶胶。这些培养物中没有甘氨酸,这表明苏氨酸醛缩酶产生的所有甘氨酸要么被异化要么被同化。这些结果证实了丙酮酸脱羧酶参与胞质乙酰辅酶A的合成。在分批培养中,过表达GLY1的Pdc(-)菌株对葡萄糖仍敏感。与任何其他Pdc(-)菌株一样,它在分批培养中无法在过量葡萄糖上生长,并且当从葡萄糖限制转移到葡萄糖过量时会分泌丙酮酸。

相似文献

2
Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae.
FEMS Microbiol Lett. 1999 May 1;174(1):73-9. doi: 10.1111/j.1574-6968.1999.tb13551.x.
4
Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose.
Yeast. 1996 Mar 15;12(3):247-57. doi: 10.1002/(SICI)1097-0061(19960315)12:3%3C247::AID-YEA911%3E3.0.CO;2-I.
8
Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
Appl Environ Microbiol. 1989 Feb;55(2):468-77. doi: 10.1128/aem.55.2.468-477.1989.
10
Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess.
Appl Environ Microbiol. 1997 Sep;63(9):3399-404. doi: 10.1128/aem.63.9.3399-3404.1997.

引用本文的文献

3
Interkingdom Comparison of Threonine Metabolism for Stem Cell Maintenance in Plants and Animals.
Front Cell Dev Biol. 2021 Sep 7;9:672545. doi: 10.3389/fcell.2021.672545. eCollection 2021.
4
Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in .
Biotechnol Biofuels. 2019 Sep 20;12:223. doi: 10.1186/s13068-019-1560-2. eCollection 2019.
6
Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.
BMC Syst Biol. 2018 Mar 19;12(Suppl 2):12. doi: 10.1186/s12918-018-0542-5.
10
GC-MS metabolomics on PPARα-dependent exacerbation of colitis.
Mol Biosyst. 2015 May;11(5):1329-37. doi: 10.1039/c5mb00048c.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
Effects of a hexokinase II deletion on the dynamics of glycolysis in continuous cultures of Saccharomyces cerevisiae.
FEMS Yeast Res. 2002 May;2(2):165-72. doi: 10.1111/j.1567-1364.2002.tb00081.x.
4
Quantification of intracellular amino acids in batch cultures of Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2001 Sep;56(5-6):776-9. doi: 10.1007/s002530100708.
6
Carbohydrate and energy-yielding metabolism in non-conventional yeasts.
FEMS Microbiol Rev. 2000 Oct;24(4):507-29. doi: 10.1111/j.1574-6976.2000.tb00553.x.
7
Regulation of the balance of one-carbon metabolism in Saccharomyces cerevisiae.
J Biol Chem. 2000 Oct 6;275(40):30987-95. doi: 10.1074/jbc.M004248200.
8
An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains.
Enzyme Microb Technol. 2000 Jun 1;26(9-10):706-714. doi: 10.1016/s0141-0229(00)00162-9.
9
Identification of the mitochondrial carnitine carrier in Saccharomyces cerevisiae.
FEBS Lett. 1999 Dec 3;462(3):472-6. doi: 10.1016/s0014-5793(99)01555-0.
10
Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae.
J Bacteriol. 1999 Dec;181(24):7409-13. doi: 10.1128/JB.181.24.7409-7413.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验