Structural Genomics Unit, Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Av. Autopista del Saler, 16, 46012, Valencia, Spain.
Chromosome Res. 2011 Jan;19(1):25-35. doi: 10.1007/s10577-010-9167-2.
The three-dimensional (3D) architecture of a genome is non-random and known to facilitate the spatial colocalization of regulatory elements with the genes they regulate. Determining the 3D structure of a genome may therefore probe an essential step in characterizing how genes are regulated. Currently, there are several experimental and theoretical approaches that aim at determining the 3D structure of genomes and genomic domains; however, approaches integrating experiments and computation to identify the most likely 3D folding of a genome at medium to high resolutions have not been widely explored. Here, we review existing methodologies and propose that the integrative modeling platform (http://www.integrativemodeling.org), a computational package developed for structurally characterizing protein assemblies, could be used for integrating diverse experimental data towards the determination of the 3D architecture of genomic domains and entire genomes at unprecedented resolution. Our approach, through the visualization of looping interactions between distal regulatory elements, will allow for the characterization of global chromatin features and their relation to gene expression. We illustrate our work by outlining the recent determination of the 3D architecture of the α-globin domain in the human genome.
基因组的三维(3D)结构不是随机的,已知它有助于调节元件与它们调节的基因在空间上的共定位。因此,确定基因组的 3D 结构可能是探究基因如何被调控的关键步骤。目前,有几种实验和理论方法旨在确定基因组和基因组区域的 3D 结构;然而,将实验和计算集成起来以识别在中等至高分辨率下基因组最可能的 3D 折叠的方法尚未得到广泛探索。在这里,我们回顾了现有的方法,并提出用于结构表征蛋白质组装的集成建模平台(http://www.integrativemodeling.org)可以用于整合各种实验数据,以确定基因组区域和整个基因组的 3D 结构,分辨率前所未有。通过可视化远距离调节元件之间的环化相互作用,我们的方法将允许对全局染色质特征及其与基因表达的关系进行表征。我们通过概述最近确定的人类基因组中α-球蛋白结构域的 3D 结构来说明我们的工作。