Suppr超能文献

肽段到蛋白质的分布与竞争对显著性的影响,以估计血液蛋白质鉴定中的错误率。

Peptide-to-protein distribution versus a competition for significance to estimate error rate in blood protein identification.

机构信息

Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada M5B 2K3.

出版信息

Anal Biochem. 2011 Apr 15;411(2):241-53. doi: 10.1016/j.ab.2010.12.003. Epub 2010 Dec 5.

Abstract

The simplest model-that authentic tandem mass spectrometry (MS/MS) spectra are no different from noise, random spectra, or false-positive results-may be directly examined by chi-square comparison of the peptide-to-protein distribution. The peptide-to-protein distribution of a set of 4151 redundant blood proteins identified by X!TANDEM indicated that there is a low probability that the authentic data were the same as noise, random spectra, or false-positive correlations (P<0.0001). In contrast, a competition for significance failed to distinguish approximately 90% of authentic blood proteins from those of noise, random spectra, or false-positive results (P<0.01) and apparently incurred a large type II error (false negative). The chi-square test of peptide-to-protein frequency distributions was found to be an efficient means to distinguish authentic data from false-positive results. Frequency-based statistics unambiguously demonstrated that proteins can be identified by liquid chromatography-electrospray ionization-MS/MS from human blood with acceptable confidence. Thus, the chi-square fit of the peptide-to-protein distribution could distinguish authentic data from random or false-positive data, but the score distribution method could not separate real results from false results.

摘要

最简单的模型——即真实串联质谱 (MS/MS) 谱与噪声、随机谱或假阳性结果没有区别——可以通过对肽与蛋白分布的卡方比较直接检验。通过 X!TANDEM 鉴定的 4151 种冗余血液蛋白的肽与蛋白分布表明,真实数据与噪声、随机谱或假阳性相关性相同的可能性很低 (P<0.0001)。相比之下,竞争显著性未能将大约 90%的真实血液蛋白与噪声、随机谱或假阳性结果区分开来 (P<0.01),显然会产生较大的第二类错误(假阴性)。肽与蛋白频率分布的卡方检验被发现是区分真实数据与假阳性结果的有效手段。基于频率的统计数据明确表明,通过液相色谱-电喷雾电离-MS/MS 可以从人血液中可靠地鉴定蛋白质。因此,肽与蛋白分布的卡方拟合可以区分真实数据与随机或假阳性数据,但得分分布方法无法区分真实结果与假结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验