Suppr超能文献

磷酸盐系统地抑制杂种矮牵牛丛枝菌根的发育,并抑制与菌根功能相关的基因。

Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning.

机构信息

Department of Biology, University of Fribourg, Rte Albert Gockel 3, CH-1700 Fribourg, Switzerland.

出版信息

Plant J. 2010 Dec;64(6):1002-17. doi: 10.1111/j.1365-313X.2010.04385.x. Epub 2010 Nov 4.

Abstract

Most terrestrial plants form arbuscular mycorrhiza (AM), mutualistic associations with soil fungi of the order Glomeromycota. The obligate biotrophic fungi trade mineral nutrients, mainly phosphate (P(i) ), for carbohydrates from the plants. Under conditions of high exogenous phosphate supply, when the plant can meet its own P requirements without the fungus, AM are suppressed, an effect which could be interpreted as an active strategy of the plant to limit carbohydrate consumption of the fungus by inhibiting its proliferation in the roots. However, the mechanisms involved in fungal inhibition are poorly understood. Here, we employ a transcriptomic approach to get insight into potential shifts in metabolic activity and symbiotic signalling, and in the defence status of plants exposed to high P(i) levels. We show that in mycorrhizal roots of petunia, a similar set of symbiosis-related genes is expressed as in mycorrhizal roots of Medicago, Lotus and rice. P(i) acts systemically to repress symbiotic gene expression and AM colonization in the root. In established mycorrhizal roots, P(i) repressed symbiotic gene expression rapidly, whereas the inhibition of colonization followed with a lag of more than a week. Taken together, these results suggest that P(i) acts by repressing essential symbiotic genes, in particular genes encoding enzymes of carotenoid and strigolactone biosynthesis, and symbiosis-associated phosphate transporters. The role of these effects in the suppression of symbiosis under high P(i) conditions is discussed.

摘要

大多数陆生植物与土壤真菌 Glomeromycota 形成丛枝菌根(AM),这是一种互利共生的关系。专性生物营养真菌通过植物交换矿物质养分,主要是磷酸盐(Pi),并获得碳水化合物。在高外源磷酸盐供应的条件下,当植物可以不依赖真菌而满足自身的 P 需求时,AM 会受到抑制,这种效应可以被解释为植物的一种主动策略,通过抑制真菌在根部的增殖来限制真菌对碳水化合物的消耗。然而,真菌抑制的机制尚不清楚。在这里,我们采用转录组学的方法来深入了解潜在的代谢活性和共生信号变化,以及在高 Pi 水平下植物的防御状态。我们表明,在矮牵牛的菌根中,与 Medicago、Lotus 和水稻的菌根中相似的一套共生相关基因被表达。Pi 系统地作用于抑制共生基因的表达和根系中的 AM 定殖。在已建立的菌根中,Pi 迅速抑制共生基因的表达,而对定殖的抑制则滞后了一周以上。综上所述,这些结果表明 Pi 通过抑制必需的共生基因表达来发挥作用,特别是编码类胡萝卜素和独脚金内酯生物合成酶以及共生相关磷酸盐转运蛋白的基因。这些作用在高 Pi 条件下抑制共生的作用正在讨论中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验