Ahmed Nazir, Li Juan, Li Yongquan, Deng Lifang, Deng Lansheng, Chachar Muzafaruddin, Chachar Zaid, Chachar Sadaruddin, Hayat Faisal, Raza Ahmed, Umrani Javed Hussain, Gong Lin, Tu Panfeng
College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangdong, 510550, Guangzhou, China.
Institute of Biomass Engineering, South China Agricultural University, 510642, Guangzhou, China.
IMA Fungus. 2025 Mar 21;16:e144989. doi: 10.3897/imafungus.16.144989. eCollection 2025.
Arbuscular Mycorrhizal (AM) symbiosis is integral to sustainable agriculture and enhances plant resilience to abiotic and biotic stressors. Through their symbiotic association with plant roots, AM improves nutrient and water uptake, activates antioxidant defenses, and facilitates hormonal regulation, contributing to improved plant health and productivity. Plants release strigolactones, which trigger AM spore germination and hyphal branching, a process regulated by genes, such as , , , and . AM recognition by plants is mediated by receptor-like kinases (RLKs) and LysM domains, leading to the formation of arbuscules that optimize nutrient exchange. Hormonal regulation plays a pivotal role in this symbiosis; cytokinins enhance AM colonization, auxins support arbuscule formation, and brassinosteroids regulate root growth. Other hormones, such as salicylic acid, gibberellins, ethylene, jasmonic acid, and abscisic acid, also influence AM colonization and stress responses, further bolstering plant resilience. In addition to plant health, AM enhances soil health by improving microbial diversity, soil structure, nutrient cycling, and carbon sequestration. This symbiosis supports soil pH regulation and pathogen suppression, offering a sustainable alternative to chemical fertilizers and improving soil fertility. To maximize AM 's potential of AM in agriculture, future research should focus on refining inoculation strategies, enhancing compatibility with different crops, and assessing the long-term ecological and economic benefits. Optimizing AM applications is critical for improving agricultural resilience, food security, and sustainable farming practices.
丛枝菌根(AM)共生对于可持续农业至关重要,并能增强植物对非生物和生物胁迫的抵御能力。通过与植物根系的共生关系,AM改善了养分和水分吸收,激活了抗氧化防御,并促进了激素调节,有助于改善植物健康和提高生产力。植物释放独脚金内酯,触发AM孢子萌发和菌丝分支,这一过程由诸如 、 、 和 等基因调控。植物对AM的识别由类受体激酶(RLK)和赖氨酸基序(LysM)结构域介导,导致形成优化养分交换的丛枝。激素调节在这种共生关系中起关键作用;细胞分裂素增强AM定殖,生长素支持丛枝形成,油菜素甾醇调节根系生长。其他激素,如水杨酸、赤霉素、乙烯、茉莉酸和脱落酸,也影响AM定殖和胁迫反应,进一步增强植物的抗逆性。除了植物健康,AM还通过改善微生物多样性、土壤结构、养分循环和碳固存来增强土壤健康。这种共生关系有助于土壤pH调节和病原体抑制,为化肥提供了一种可持续的替代方案,并提高了土壤肥力。为了最大限度地发挥AM在农业中的潜力,未来的研究应集中在优化接种策略、增强与不同作物的兼容性以及评估长期的生态和经济效益。优化AM的应用对于提高农业抗逆性、粮食安全和可持续农业实践至关重要。