Suppr超能文献

用随机森林和支持向量机预测 siRNA 效力。

Predicting siRNA potency with random forests and support vector machines.

机构信息

Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.

出版信息

BMC Genomics. 2010 Dec 1;11 Suppl 3(Suppl 3):S2. doi: 10.1186/1471-2164-11-S3-S2.

Abstract

BACKGROUND

Short interfering RNAs (siRNAs) can be used to knockdown gene expression in functional genomics. For a target gene of interest, many siRNA molecules may be designed, whereas their efficiency of expression inhibition often varies.

RESULTS

To facilitate gene functional studies, we have developed a new machine learning method to predict siRNA potency based on random forests and support vector machines. Since there were many potential sequence features, random forests were used to select the most relevant features affecting gene expression inhibition. Support vector machine classifiers were then constructed using the selected sequence features for predicting siRNA potency. Interestingly, gene expression inhibition is significantly affected by nucleotide dimer and trimer compositions of siRNA sequence.

CONCLUSIONS

The findings in this study should help design potent siRNAs for functional genomics, and might also provide further insights into the molecular mechanism of RNA interference.

摘要

背景

短干扰 RNA(siRNA)可用于功能基因组学中的基因表达敲低。对于感兴趣的靶基因,可以设计许多 siRNA 分子,但其表达抑制效率往往不同。

结果

为了促进基因功能研究,我们开发了一种新的机器学习方法,基于随机森林和支持向量机来预测 siRNA 的效力。由于存在许多潜在的序列特征,因此使用随机森林选择最相关的影响基因表达抑制的特征。然后使用选定的序列特征构建支持向量机分类器来预测 siRNA 的效力。有趣的是,siRNA 序列中的核苷酸二聚体和三聚体组成对基因表达抑制有显著影响。

结论

本研究的结果应有助于为功能基因组学设计有效的 siRNA,并且可能为 RNA 干扰的分子机制提供进一步的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c489/2999347/d95b6dc92558/1471-2164-11-S3-S2-1.jpg

相似文献

1
Predicting siRNA potency with random forests and support vector machines.
BMC Genomics. 2010 Dec 1;11 Suppl 3(Suppl 3):S2. doi: 10.1186/1471-2164-11-S3-S2.
2
Selection of hyperfunctional siRNAs with improved potency and specificity.
Nucleic Acids Res. 2009 Dec;37(22):e152. doi: 10.1093/nar/gkp864.
3
Bioinformatics of siRNA design.
Methods Mol Biol. 2014;1097:477-90. doi: 10.1007/978-1-62703-709-9_22.
4
Filtering of ineffective siRNAs and improved siRNA design tool.
Bioinformatics. 2005 Jan 15;21(2):144-51. doi: 10.1093/bioinformatics/bth498. Epub 2004 Aug 27.
5
Approximate Bayesian feature selection on a large meta-dataset offers novel insights on factors that effect siRNA potency.
Bioinformatics. 2009 Jul 1;25(13):1594-601. doi: 10.1093/bioinformatics/btp284. Epub 2009 May 6.
6
Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming.
Bioinformatics. 2004 Nov 22;20(17):3055-63. doi: 10.1093/bioinformatics/bth364. Epub 2004 Jun 16.
8
Demonstration of two novel methods for predicting functional siRNA efficiency.
BMC Bioinformatics. 2006 May 29;7:271. doi: 10.1186/1471-2105-7-271.
9
The effect of regions flanking target site on siRNA potency.
Genomics. 2013 Oct;102(4):215-22. doi: 10.1016/j.ygeno.2013.07.009. Epub 2013 Jul 25.
10
Efficient siRNA selection using hybridization thermodynamics.
Nucleic Acids Res. 2008 Feb;36(2):640-7. doi: 10.1093/nar/gkm920. Epub 2007 Dec 10.

引用本文的文献

2
Asymmetric trichotomous partitioning overcomes dataset limitations in building machine learning models for predicting siRNA efficacy.
Mol Ther Nucleic Acids. 2023 Jun 14;33:93-109. doi: 10.1016/j.omtn.2023.06.010. eCollection 2023 Sep 12.
3
Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations.
Front Plant Sci. 2022 Oct 17;13:979742. doi: 10.3389/fpls.2022.979742. eCollection 2022.
6
Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits.
Front Plant Sci. 2016 Dec 6;7:1864. doi: 10.3389/fpls.2016.01864. eCollection 2016.
7
Computational design of artificial RNA molecules for gene regulation.
Methods Mol Biol. 2015;1269:393-412. doi: 10.1007/978-1-4939-2291-8_25.
8
Incorporating amino acids composition and functional domains for identifying bacterial toxin proteins.
Biomed Res Int. 2014;2014:972692. doi: 10.1155/2014/972692. Epub 2014 Jul 7.
9
Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.
J Comput Aided Mol Des. 2014 Jan;28(1):49-60. doi: 10.1007/s10822-014-9706-6. Epub 2014 Jan 19.
10
Prediction and analysis of antibody amyloidogenesis from sequences.
PLoS One. 2013;8(1):e53235. doi: 10.1371/journal.pone.0053235. Epub 2013 Jan 7.

本文引用的文献

1
Selection of hyperfunctional siRNAs with improved potency and specificity.
Nucleic Acids Res. 2009 Dec;37(22):e152. doi: 10.1093/nar/gkp864.
2
Approximate Bayesian feature selection on a large meta-dataset offers novel insights on factors that effect siRNA potency.
Bioinformatics. 2009 Jul 1;25(13):1594-601. doi: 10.1093/bioinformatics/btp284. Epub 2009 May 6.
3
More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature.
Nucleic Acids Res. 2007;35(2):433-40. doi: 10.1093/nar/gkl1065. Epub 2006 Dec 14.
4
An accurate and interpretable model for siRNA efficacy prediction.
BMC Bioinformatics. 2006 Nov 30;7:520. doi: 10.1186/1471-2105-7-520.
5
Computational models with thermodynamic and composition features improve siRNA design.
BMC Bioinformatics. 2006 Feb 12;7:65. doi: 10.1186/1471-2105-7-65.
6
Gene selection and classification of microarray data using random forest.
BMC Bioinformatics. 2006 Jan 6;7:3. doi: 10.1186/1471-2105-7-3.
7
Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency.
Nat Biotechnol. 2005 Nov;23(11):1440-4. doi: 10.1038/nbt1151. Epub 2005 Oct 30.
8
Design of a genome-wide siRNA library using an artificial neural network.
Nat Biotechnol. 2005 Aug;23(8):995-1001. doi: 10.1038/nbt1118. Epub 2005 Jul 17.
9
Unlocking the potential of the human genome with RNA interference.
Nature. 2004 Sep 16;431(7006):371-8. doi: 10.1038/nature02870.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验