Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
BMC Genomics. 2010 Dec 2;11 Suppl 4(Suppl 4):S18. doi: 10.1186/1471-2164-11-S4-S18.
A key problem in systems biology is estimating dynamical models of gene regulatory networks. Traditionally, this has been done using regression or other ad-hoc methods when the model is linear. More detailed, realistic modeling studies usually employ nonlinear dynamical models, which lead to computationally difficult parameter estimation problems. Functional data analysis methods, however, offer a means to simplify fitting by transforming the problem from one of matching modeled and observed dynamics to one of matching modeled and observed time derivatives-a regression problem, albeit a nonlinear one.
We formulate a functional data analysis approach for estimating the parameters of nonlinear dynamical models and evaluate this approach on data from two real systems, the gap gene system of Drosophila melanogaster and the synthetic IRMA network, which was created expressly as a test case for genetic network inference. We also evaluate the approach on simulated data sets generated by the GeneNetWeaver program, the basis for the annual DREAM reverse engineering challenge. We assess the accuracy with which the correct regulatory relationships within the networks are extracted, and consider alternative methods of regularization for the purpose of overfitting avoidance. We also show that the computational efficiency of the functional data analysis approach, and the decomposability of the resulting regression problem, allow us to explicitly enumerate and evaluate all possible regulator combinations for every gene. This gives deeper insight into the the relevance of different regulators or regulator combinations, and lets one check for alternative regulatory explanations.
Functional data analysis is a powerful approach for estimating detailed nonlinear models of gene expression dynamics, allowing efficient and accurate estimation of regulatory architecture.
系统生物学中的一个关键问题是估计基因调控网络的动态模型。传统上,当模型为线性时,这是通过回归或其他特定方法完成的。更详细、更现实的建模研究通常采用非线性动力模型,这导致了计算上困难的参数估计问题。然而,功能数据分析方法提供了一种简化拟合的方法,即将问题从匹配模型和观察到的动态转变为匹配模型和观察到的时间导数的问题——尽管是一个非线性的回归问题。
我们提出了一种用于估计非线性动力模型参数的功能数据分析方法,并在两个真实系统的数据上评估了该方法,即果蝇的间隙基因系统和合成的 IRMA 网络。该网络是专门作为遗传网络推断的测试案例创建的。我们还在由 GeneNetWeaver 程序生成的模拟数据集上评估了该方法,该程序是年度 DREAM 反向工程挑战的基础。我们评估了从网络中提取正确调控关系的准确性,并考虑了用于避免过拟合的替代正则化方法。我们还表明,功能数据分析方法的计算效率和由此产生的回归问题的可分解性允许我们明确地枚举和评估每个基因的所有可能的调节剂组合。这深入了解了不同调节剂或调节剂组合的相关性,并允许人们检查替代的调节解释。
功能数据分析是估计基因表达动力学详细非线性模型的一种强大方法,允许高效、准确地估计调节结构。