生成用于逆向工程方法性能评估的逼真的计算机模拟基因网络。

Generating realistic in silico gene networks for performance assessment of reverse engineering methods.

作者信息

Marbach Daniel, Schaffter Thomas, Mattiussi Claudio, Floreano Dario

机构信息

Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Intelligent Systems, Lausanne, Switzerland.

出版信息

J Comput Biol. 2009 Feb;16(2):229-39. doi: 10.1089/cmb.2008.09TT.

Abstract

Reverse engineering methods are typically first tested on simulated data from in silico networks, for systematic and efficient performance assessment, before an application to real biological networks. In this paper, we present a method for generating biologically plausible in silico networks, which allow realistic performance assessment of network inference algorithms. Instead of using random graph models, which are known to only partly capture the structural properties of biological networks, we generate network structures by extracting modules from known biological interaction networks. Using the yeast transcriptional regulatory network as a test case, we show that extracted modules have a biologically plausible connectivity because they preserve functional and structural properties of the original network. Our method was selected to generate the "gold standard" networks for the gene network reverse engineering challenge of the third DREAM conference (Dialogue on Reverse Engineering Assessment and Methods 2008, Cambridge, MA).

摘要

在应用于真实生物网络之前,逆向工程方法通常首先在计算机网络的模拟数据上进行测试,以进行系统和高效的性能评估。在本文中,我们提出了一种生成具有生物学合理性的计算机网络的方法,该方法可以对网络推理算法进行实际的性能评估。我们不是使用已知仅部分捕获生物网络结构特性的随机图模型,而是通过从已知生物相互作用网络中提取模块来生成网络结构。以酵母转录调控网络为例,我们表明提取的模块具有生物学上合理的连通性,因为它们保留了原始网络的功能和结构特性。我们的方法被选来为第三届DREAM会议(2008年逆向工程评估与方法对话,马萨诸塞州剑桥)的基因网络逆向工程挑战生成“金标准”网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索