Suppr超能文献

基于亚结构模式识别和机器学习方法的秀丽隐杆线虫毒性的工业化学物质的计算机预测。

In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

出版信息

Chemosphere. 2011 Mar;82(11):1636-43. doi: 10.1016/j.chemosphere.2010.11.043. Epub 2010 Dec 9.

Abstract

There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods.

摘要

全世界的工业界和监管机构越来越需要快速安全地评估化学品。在计算机技术辅助毒性测试中,通过计算来预测化学品的毒性是一种实用的替代方法。这在解决有机化学品的持久性、生物蓄积性和毒性潜力方面尤其如此。梨形四膜虫毒性通常用作毒性终点。在这项研究中,从文献中收集了 1571 种不同的独特化学物质,组成了梨形四膜虫毒性的最大的多样化数据集。通过亚结构模式识别和不同的机器学习方法,包括支持向量机(SVM)、C4.5 决策树、k-最近邻和随机森林,开发了梨形四膜虫毒性的分类预测模型。5 折交叉验证的结果表明,SVM 方法的性能优于其他算法。SVM 分类模型的整体预测准确率在 5 折交叉验证中为 92.2%,在外部验证集中为 92.6%。此外,还通过信息增益分析方法确定了几个代表性的亚结构模式,用于描述梨形四膜虫毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验