Suppr超能文献

AquaticTox:一种基于集成学习的水生毒性评估网络工具,用于促进绿色化学品的筛选。

AquaticTox: A Web-Based Tool for Aquatic Toxicity Evaluation Based on Ensemble Learning to Facilitate the Screening of Green Chemicals.

作者信息

Shi Xing-Xing, Wang Zhi-Zheng, Wang Yu-Liang, Wang Fan, Yang Guang-Fu

机构信息

National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.

出版信息

Environ Health (Wash). 2024 Apr 1;2(4):202-211. doi: 10.1021/envhealth.4c00014. eCollection 2024 Apr 19.

Abstract

The widespread use of chemical products inevitably brings many side effects as environmental pollutants. Toxicological assessment of compounds to aquatic life plays an important role in protecting the environment from their hazards. However, animal testing approaches for aquatic toxicity evaluation are time-consuming, expensive, and ethically limited, especially when there are a great number of compounds. modeling methods can effectively improve the toxicity evaluation efficiency and save costs. Here, we present a web-based server, AquaticTox, which incorporates a series of ensemble models to predict acute toxicity of organic compounds in aquatic organisms, covering , , , , and . The predictive models are built through ensemble learning algorithms based on six base learners. These ensemble models outperform all corresponding single models, achieving area under the curve (AUC) scores of 0.75-0.92. Compared to the best single models, the average precisions of the ensemble models have been increased by 12-22%. Additionally, a self-built knowledge base of the structure-aquatic toxic mode of action (MOA) relationship was integrated into AquaticTox for toxicity mechanism analysis. Hopefully, the user-friendly tool (https://chemyang.ccnu.edu.cn/ccb/server/AquaticTox); could facilitate the identification of aquatic toxic chemicals and the design of green molecules.

摘要

化学产品的广泛使用不可避免地带来了许多作为环境污染物的副作用。化合物对水生生物的毒理学评估在保护环境免受其危害方面起着重要作用。然而,用于水生毒性评估的动物试验方法耗时、昂贵且在伦理上存在限制,尤其是当存在大量化合物时。建模方法可以有效提高毒性评估效率并节省成本。在此,我们展示了一个基于网络的服务器AquaticTox,它包含一系列集成模型来预测有机化合物对水生生物的急性毒性,涵盖了、、、和。预测模型是通过基于六个基础学习器的集成学习算法构建的。这些集成模型优于所有相应的单一模型,曲线下面积(AUC)得分达到0.75 - 0.92。与最佳单一模型相比,集成模型的平均精度提高了12 - 22%。此外,一个自建的结构 - 水生毒性作用模式(MOA)关系知识库被整合到AquaticTox中用于毒性机制分析。希望这个用户友好的工具(https://chemyang.ccnu.edu.cn/ccb/server/AquaticTox)能够促进水生有毒化学物质的识别和绿色分子的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb27/11503919/24856f00148f/eh4c00014_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验